Аннотация рабочей программы дисциплины:

Б1.В.ОД.1 – «Дополнительные главы математики»

Цель изучения дисциплины является ознакомить бакалавров с основами математического аппарата, необходимого для решения теоретических и практических задач исследования массовых общественных явлений и процессов, выработать навыки статистического исследования общественных явлений и процессов, применения информационных технологий обработки массовых данных об общественных явлениях и процессах, привитие навыков современного математического мышления.

Задачами дисциплины являются:

- усвоение приёмов и методов сбора, систематизации, обработки и анализа массовых данных о явлениях и процессах;
- получение навыков использования статистических методов и основ статистического моделирования процессов;
- решение конкретных статистических задач с применением пакетов программ обработки данных.

Место учебной дисциплины в структуре ОПОП: Дисциплина «Дополнительные главы математики» относится к основным дисциплинам вариативной части блока Б1.

Освоение дисциплины основывается на знаниях студентов, полученных ими в ходе изучения дисциплины предыдущего курса «Математики».

Данная дисциплина необходима для освоения следующих дисциплин: «Теория информационных процессов и систем», «Корпоративные информационные системы».

Планируемые результаты обучения по учебной дисциплине в рамках планируемых результатов освоения ОПОП:

Код компетенци и	Содержание компетенции	Планируемые результаты освоения дисциплины		
ОПК-2	способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования	Знать: фундаментальные научно- исследовательские работы в области; основные термины и понятия системного анализа; методы исследования систем и построения моделей; математические модели оптимального управления для не- прерывных и дискретных процессов. Уметь: проводить научные исследования, применять методы математического анализа и моделирования, теоретического и экспериментального исследования. оценивать параметры моделей; содержательно интерпретировать результаты моделирования социально-экономических процессов и систем; анализировать их качество и иметь навыки их корректировки для получения удовлетворительных результатов. Владеть: навыками самостоятельной научно-исследовательской работы; способностью самостоятельно формулировать результаты своей научно-исследовательской работы;		

		опытом про- ведения системного исследования от этапа постановки задачи и выдвижения гипотез, до анализа результатов и оформления выводов; навыками организации сложных экспертиз и выбора решений; навыками применения инструментов математического
		моделирования.
ПК-25	способностью использовать математические методы обработки, анализа и синтеза результатов профессиональных исследований	Знать: основные математические и алгоритмические модели систем, методы их имитационного моделирования, среды MatLab, Maple и их возможности, основы построения компьютерных дискретно-математических моделей. Уметь: решать задачи теоретического и прикладного характера из различных разделов математики и теории систем, строить модели объектов и понятий. Владеть: способами построения имитационных моделей сложных процессов управления, навыками алгоритмизации основных задач.

Объем дисциплины с указанием отведенного на них количества академических часов: <u>360</u> часов / <u>10</u> зачетных единиц.

Содержание дисциплины, структурированное по темам (разделам):

№ п/п	Наименование раздела дисциплины	Содержание раздела (Тематика занятий)	Формиру емые компетен ции
1.	Раздел I. Теория вероятностей	Тема 1. Понятия множества. Способы задания множеств. Подмножества. Операции над множествами. Соотношения между множествами и составными высказываниями. Бинарные отношения. Отображение множеств. Операции над событиями. Условная вероятность и теорема умножения. Независимость событий. Формула полной вероятности. Формула Байеса. Испытания Бернулли. Наивероятнейшее число успехов. Приближённые формулы.	ОПК-2, ПК-25
2.	Раздел II. Основы математическо й статистики	Тема 2. Выборки и их характеристики. Генеральная и выборочная характеристики. Статистическое распределение выборки. Эмпирическая функция распределения. Графическое изображение статистического распределения. Числовые характеристики статистического распределения Элементы теории оценок и проверки гипотез: оценка неизвестных параметров. Методы нахождения точечных оценок. Интервальные оценки параметров. Доверительные интервалы для параметров нормального распределения Проверка статистических гипотез. Проверка гипотез о законе распределения	ОПК-2 ПК-25

3.	Раздел III.	Тема 3. Линейная парная регрессия. Регрессия по	
3.	1 аздел 111. Элементы	методу МНК. Основные положения регрессивного	
	регрессивно-	анализа. Свойства оценок, Полученных методом	
	корреляционно	наименьших квадратов. Анализ вариации зависимой	
	го анализа	переменной. Предположение и проверка адекватности	
	10 unummu	уравнения регрессии: точечный и интервальный прогноз.	ОПК-2
		Условия и теорема Гаусса-Маркова. Интервальная	ПК-25
		оценка. Функции регрессии и её параметров. Оценка	
		значимости уравнения регрессии. Коэффициент	
		детерминации. Свойства коэффициентов регрессии и	
		проверка гипотез. Нелинейные регрессии, оценка	
		значимости	
4.	Раздел IV.	Тема 4. Общая схема математического моделирования.	
	Элементы вы-	Абсолютная и относительная погрешность. Погрешность	
	числительной	арифметической операции. Локализация корней. Методы	
	математики	решения нелинейных уравнений: метод биссекции	ОПК-2
		(половинного деления), метод простых итераций, метод	ПК-25
		Ньютона (метод касательных), метод секущих.	11K-23
		Численные методы решения задачи Коши для ОДУ.	
		Метод рядов Тейлора. Метод Эйлера. Метод Рунге-	
		Кутта.	
5.	Раздел V.	Тема 5. Задачи линейного программирования.	
	Исследование	Построение экономико-математических моделей задач	
	операций	линейного программирования. Графическое решение	O 1111 A
		задач. Анализ моделей на чувствительность. Симплекс-	ОПК-2
		метод. Теория двойственности в задачах линейного	ПК-25
		программирования. Основные понятия. Принятие	
		решений в условиях полной определённости, в условиях риска. Теория игр.	
6	Раздел VI.	Тема 6. Основные понятия и определения.	
U	Двойные и	Геометрический и физический смысл двойного	
	тройные	интеграла. Основные свойства двойного интеграла.	
	интегралы	Вычисление двойного интеграла в декартовых	
		координатах. Вычисление двойного интеграла в	
		полярных координатах. Приложение двойного	ОПК-2
		интеграла. Вычисление тройного интеграла в декартовых	ПК-25
		координатах. Замена переменных в тройном интеграле.	
		Вычисление тройного интеграла в цилиндрических и	
		сферических координатах. Некоторые приложения	
		тройных интегралов.	
7	Раздел VII.	Тема 7. . Вычисление криволинейного интеграла 1-рода.	
	Криволинейны	Некоторые приложения криволинейного интеграла 1-	
	е и	рода. Поверхностный интеграл 1-го рода. Вычисление	
	поверхностные	криволинейного интеграла 2-го рода. Формула Остро-	ОПК-2
	интегралы	градского - Грина. Условия независимости	ПК-25
		криволинейного интеграла 2-го рода от пути	
		интегрирования. Некоторые приложения	
		криволинейного интеграла 2-го рода. Поверхностный интеграл 2-го рода.	
8	Раздел VIII.	тема 8. Периодические функции. Периодические	
•	Раздел VIII. Ряды Фурье	процессы. Тригонометрический ряд Фурье. Теорема	ОПК-2
	тиды Фурьс	Процессы. Григонометрический ряд Фурье. Георема Дирихле. Разложение чётных и нечётных функций.	ПК-25
		дирилие. газножение ченных и печенных функции.	

Функций произвольного периода. Представле непериодической функции рядом Фурье. Комплекс форма ряда Фурье.	
---	--

Форма промежуточной аттестации: Экзамен.