

Федеральное агентство морского и речного транспорта Федеральное государственное бюджетное образовательное учреждение высшего образования

«Государственный университет морского и речного флота имени адмирала С.О. Макарова»

Воронежский филиал

федерального государственного бюджетного образовательного учреждения высшего образования «Государственный университет морского и речного флота имени адмирала С.О. Макарова»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

Б1.Б.12 «Математика»

(Приложение к рабочей программе дисциплины)

Уровень образования: Высшее образование – бакалавриат 38.03.02 Менеджмент Направление подготовки: Направленность (профиль): Управление предприятием и человеческими ресурсами Вид профессиональной Организационно-управленческая, информационно-аналитическая, предпринимадеятельности: тельская Язык обучения: Русский Кафедра: математики, информационных систем и технологий Форма обучения: Очная Заочная 1, 2 Kypc: Плотников С.Н. Составитель:

ВОРОНЕЖ 2020 г.

СОДЕРЖАНИЕ

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	3
1.1 Перечень компетенций и этапы их формирования в процессе освоения	3
дисциплины	3
1.2 Паспорт фонда оценочных средств для проведения текущей	3
и промежуточной аттестации обучающихся	3
1.3 Критерии оценивания результата обучения по дисциплине	5
и шкала оценивания	J
2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО	6
КОНТРОЛЯ	Ü
2.1 Задания для самостоятельной работы и средства текущего контроля	6
2.2 Критерии оценки качества освоения дисциплины	54
3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	
ПО ДИСЦИПЛИНЕ	55
3.1 Теоретические вопросы и практические задания для проведения зачета	55
3.2 Показатели, критерии и шкала оценивания ответов на зачете	57

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

1.1 Перечень компетенций и этапы их формирования в процессе освоения дисциплины

В результате освоения ОПОП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код компе- тенции	Содержание компе- тенции	Планируемые результаты освоения дисциплины
ОПК-7	Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационных технологий и с учетом основных требований информационной безопасности	Знать: - основные разделы линейной алгебры, взаимосвязь линейной алгебры с другими математическими и экономическими дисциплинами, основные направления применения линейной алгебры в экономической сфере; - основные понятия, приемы и методы математического анализа; - основы теории вероятностей и математической статистики, необходимые для решения финансовых и экономических задач. Уметь: - обобщать полученные знания по математике, воспринимать математическую терминологию и оперировать ей, обобщать и анализировать полученную информацию, решать практические задачи, находить приложения математическому анализу, линейной алгебре, теории вероятностей и математической статистике в экономической практике. - осуществлять поиск, сбор и анализ информации, необходимый для решения поставленной экономической задачи; - осуществлять выбор соответствующего математического инструментария, необходимого для обработки экономических данных в соответствии с поставленной задачей; - анализировать результаты расчетов, обосновывать полученные выводы; - анализировать и содержательно интерпретировать полученные результаты Владеть: - культурой мышления, необходимой для доказательства основных фактов и обобщения аппарата математического анализа, линейной алгебры, теории вероятностей и математической статистике; - навыками применения основных результатов расчетов к решению практических задач. - навыками применения современного математического инструментария для решения управленческих задач.

1.2 Паспорт фонда оценочных средств для проведения текущей и промежуточной аттестации обучающихся

	T	T 70	
	Контролируемые	Код контролируе-	Наименование
Π/Π	темы дисциплины	мой компетен-	оценочного
	темы дисциплины	ции	средства
	Тема 1. Введение в анализ	ции	Коллоквиум, прак-
	Теми 1. Введение в инизино		тические задания,
1		ОПК-7	тестовые задания,
			экзамен.
	Тема 2. Дифференциальное исчисление		Коллоквиум, прак-
_	функций одной переменной		тические задания,
2	The second secon	ОПК-7	тестовые задания,
			экзамен.
	Тема 3. Интегральное исчисление функций		Коллоквиум, прак-
	одной переменной	0777.5	тические задания,
3	1	ОПК-7	тестовые задания,
			экзамен.
	Тема 4. Функции нескольких переменных.		Коллоквиум, прак-
4	Элементы теории функций комплексного	OHIC 7	тические задания,
4	переменного	ОПК-7	тестовые задания,
			экзамен.
	Тема 5. Дифференциальные и разностные		Коллоквиум, прак-
5	уравнения	ОПК-7	тические задания,
		OHK-7	тестовые задания,
			экзамен.
	Тема 6. Ряды		Коллоквиум, прак-
6		ОПК-7	тические задания,
		Offic /	тестовые задания,
			экзамен.
	Тема 7. Вычисление определителей и дей-		Коллоквиум, прак-
7	ствия с матрицами	ОПК-7	тические задания,
			тестовые задания,
	T. O.D.		экзамен.
	Тема 8. Решение систем линейных уравне-		Коллоквиум, прак-
8	ний и операции над векторами	ОПК-7	тические задания,
			тестовые задания,
	Torra O Domonio agray no avantimization		ЭКЗАМЕН.
	Тема 9. Решение задач по аналитической		Коллоквиум, прак-
9	геометрии	ОПК-7	тические задания,
			тестовые задания,
 	Тема 10. Основные понятия и теоремы		экзамен. Коллоквиум, прак-
	теории вероятностей		тические задания,
10	теории веролиностей	ОПК-7	тические задания, тестовые задания,
			экзамен.
	Тема 11. Повторные независимые испыта-		Коллоквиум, прак-
	ния		тические задания,
11		ОПК-7	тестовые задания,
			экзамен.
12	Тема 12. Дискретные случайные величины	ОПК-7	Коллоквиум, прак-
	12. And permane only minime bound in the	Jane ,	ouronzinjin, npan

	и их числовые характеристики		тические задания,
			тестовые задания,
			экзамен.
	Тема 13. Непрерывные случайные величи-		Коллоквиум, прак-
13	ны и их числовые характеристики	ОПК-7	тические задания,
13		OHK-7	тестовые задания,
			экзамен.
	Тема 14. Выборки и их		Коллоквиум, прак-
14	характеристики	ОПК-7	тические задания,
14		OHK-7	тестовые задания,
			экзамен.
	Тема 15. Статистическая гипотеза		Коллоквиум, прак-
15		ОПК-7	тические задания,
13		OHK-/	тестовые задания,
			экзамен.
	Тема 16. Элементы корреляционного и		Коллоквиум, прак-
16	регрессионного анализа	ОПК-7	тические задания,
10		OHK-/	тестовые задания,
			экзамен.

1.3 Критерии оценивания результата обучения по дисциплине и шкала оценивания

Уровни сформированности компетенции	Основные признаки уровня
Пороговый (базовый) уровень (Оценка «3», Зачтено) (обязательный по отношению ко всем выпускникам к моменту завершения ими обучения по ОПОП)	Обучающийся демонстрирует удовлетворительную способностью осуществлять сбор, анализ и обработку данных, необходимых для решения профессиональных задач, выбрать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, проанализировать результаты расчетов и обосновать полученные выводы, а также способностью на основе описания экономических процессов и явлений строить стандартные теоретические и эконометрические модели, анализировать и содержательно интерпретировать полученные результаты.
	Обучающийся демонстрирует достаточно полную, но с некоторыми неточ-
Повышенный (продвинутый) уровень (Оцен-	ностями способностью осуществлять
ка «4», Зачтено) (превосходит пороговый (базо-	сбор, анализ и обработку данных, необ-
вый) уровень по одному или нескольким	ходимых для решения профессиональных задач, выбрать

существенным признакам)	тальные средства для обработки экономических данных в соответствии с поставленной задачей, проанализировать результаты расчетов и обосновать полученные выводы, а также способностью на основе описания экономических процессов и явлений строить стандартные теоретические и эконометрические модели, анализировать и содержательно интерпретировать полученные результаты.
Высокий (превосходный) уровень (Оценка «5», Зачтено) (превосходит пороговый (базовый) уровень по всем существенным признакам, предполагает максимально возможную выраженность компетенции)	Обучающийся демонстрирует полную, комплексную способность осуществлять сбор, анализ и обработку данных, необходимых для решения профессиональных задач, выбрать инструментальные средства для обработки экономических данных в соответствии с поставленной задачей, проанализировать результаты расчетов и обосновать полученные выводы, а также способностью на основе описания экономических процессов и явлений строить стандартные теоретические и эконометрические модели, анализировать и содержательно интерпретировать полученные результаты.

2. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО контроля

2.1 Задания для самостоятельной работы и средства текущего контроля

Разделу I «Математический анализ»

Вопросы к коллоквиуму:

- Возрастание и убывание функции.
- Минимум и максимум функции (необходимое и достаточные условия существования экстремума).
 - 3. Выпуклость и вогнутость кривой. Точки перегиба.
 - 4. Общий план исследования функций с целью построения графика.
 - 5. Первообразная, определение, теорема о структуре первообразных.
 - Свойства неопределенных интегралов. Таблица основных интегралов.
 - Интегрирование методом замены переменной или способом подстановки.
 - Интегрирование по частям в неопределенном интеграле.
 - 9. Интегрирование функций, содержащих квадратный трехчлен вида: 10. Интегрирование правильных рациональных дробей.

Задачи для текущего контроля

Задача №1. Вычислить пределы указанных функций.

$$\lim_{x \to 1} \frac{x^2 - 2x - 3}{x^2 - 1} \qquad \lim_{x \to 1} \frac{x - \sqrt{2 - x}}{x - 1} \\
\lim_{x \to \infty} \frac{x^2 - 2x - 3}{x^2 - 1} \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} \\
1.4 \quad \lim_{x \to 0} \frac{1 - \cos x}{x}$$

Задача №2. Сравнить бесконечно малые $\alpha = \sin^2 x$ и $\beta = 1 - \cos 2x$ при $x \to 0$ **Задача №3.** Найти точки разрыва функции и определить их род $y = \frac{x^2 - 2x + 1}{x^2 - 1}e^{1/x}$

Задача №4. Найти производные данных функций.

$$y = \frac{x^{3} - \sqrt{x} + 2}{\sqrt[3]{x^{2}}}, y' = ?$$

$$4.1 \quad y' = ?$$

$$4.2 \quad y = x^{2} \cdot 2^{x-1}, y' = ?$$

$$4.3 \quad y = \sin^{3} x, y'' = ?$$

$$4.4 \quad y = \frac{\sin 2x - tgx}{\cos^{2} x}, y'(\pi/4) = ?$$

Задача №5. Написать уравнение касательной к графику данной функции в точке $x = x_0$

$$x^3 - y^2 + 2y = 0$$
, $x_0 = -1$

Задача №6. Записать дифференциал данной функции и вычислить его в точке $x = x_0$ для $\Delta x = 0,1$

$$y = x\sqrt{\sin(\pi x/2)}, x_0 = 1$$

Задачи для проведения промежуточной аттестации

Задача №1. Найти неопределенный интеграл.

$$\int \frac{x^3 - 2x\sqrt{x} + 1}{x} dx$$
1.1
$$\int xe^{-x^2} dx$$
1.2
$$\int xe^{-x^2} dx$$
1.3
$$\int x^2 \ln x dx$$
1.4
$$\int \cos^2 x dx$$
1.5
$$\int \frac{x^3 - 2x^2 + x - 3}{x^2 - 2x - 3} dx$$

Задача №2. Вычислить определенный интеграл

$$2.1 \int_{-1}^{2} \frac{dx}{\sqrt{x+2}}$$

$$\int_{\pi/2}^{\pi/2} \cos x \ln(\sin x) dx$$

$$2.2 \int_{\pi/6}^{\pi/6} \cos x \ln(\sin x) dx$$

Задача №3. Найти площадь криволинейной трапеции, ограниченной данными линия- x = 1; x = 4; xy = 4

Задача №4. Вычислить несобственные интегралы

$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{x}}$$

$$\int_{0}^{2} \frac{dx}{\sqrt{4-x^{2}}}$$

Задача №5. Найти общее решение (общий интеграл) дифференциального уравнения $5.1 \ x(y-1)dx - (x+1)ydy = 0$

$$5.2 \quad y' - xy = x$$

$$5.3 \ y'' - y' - 2y = 0$$

Задача №6. Найти частное решение, удовлетворяющее данным начальным условиям

$$6.1 \quad y'-y = xy^2, \quad y(0) = 0$$

6.2
$$y''+4y = \sin x$$
, $y(0) = 0$, $y'(0) = 1$

Задача №7. Решить систему дифференциальных уравнений

$$\begin{cases} x' = x + 2y \\ y' = 2x - y \end{cases}$$

Тестовые задания

Тема1. Введение в анализ

1. Число 2,1 принадлежит множеству	1. _B	$=\{b b\in Z,$	$-2 \le b < 3$		
	2. $A = \{a \mid a \in \mathbb{N}, 1 \le a < 10\}$				
	3. $C = \{c \mid c \in \mathbb{R}, -3 < c \le 2,6\}$				
	4. $D = \{d \mid d \in Q, d < 2\}$				
2. На числовой прямой дана точка х	1)	(5,1;5,4	.) 3)	(4,9;5,3)	
=5,2. Тогда ее «є-окрестностью» мо-	2)	(4,9;5,5)	5) 4)	(4,8;5,1)	
жет являться интервал					
3. Установите соответствия между					
списками двух множеств, заданных	A) [2;3] B) $(-\infty;2] \cup [3;\infty)$				
следующим образом:					
1) $\{x: x^2-5x+6 \le 0\}$	C) $(-\infty;2)\cup(3;\infty)$				
2) $\{x: x^2-5x+6=0\}$					
3) $\{x: x^2-5x+6<0\}$	D)	(2;3)	E) {2;3]	}	
4) $\{x: x^2-5x+6>0\}$					
4. Образом отрезка [0; 5] при отобра-	1)	[2; 5]	3)	(2; 17)	
жении $f = 3x + 2$ является	2)	[0; 5]	4)	[2; 17]	
5. Установите соответствия между					
промежутками и их образами $y = 3x-1$:	A) (2	2;5]	B) (2;5)	C) (-4;-1) D)	
1) [1;2]	[2;5]	E) [-4	4;-1) F) [-	4;-1]	
2) (1;2)					
3) [-1;0]					
4) (-1;0)					
6 . Дана функция $y = \sqrt{x^2 + x - 6} + 5$. Тогда	1)	[-5;+∞)	3) $(\sqrt{\epsilon}$	$\overline{5} + 5; +\infty)$	

ее областью значений является множе-	2)	(-∞;-1]∪[2;-	_{+∞)} 4)	[5;+∞)
ство				
7. Установите соответствие между пе-				
риодической функцией и значением ее	A)	4	B)	π
периода: 1) $y = \cos \pi x$ 2) $y = tg \frac{3\pi x}{2}$	C)	2/3	D)	1
$3) y = \sin \frac{\pi x}{2}$	E)	2		
8. Заполните пропуски: Если последо-	1)	монотонна	; сходится	I
вательность, то она	2)	сходится;	ограниче	на
	3)	монотонна	и огранич	нена; сходится
	4)	ограничена	а; сходитс	Я
9. Первые три члена последовательно-	1)	$a_n = \frac{1}{3n+4}$	2) a	= 1
сти: $\frac{1}{7}, \frac{1}{10}, \frac{1}{13}$. Тогда формула общего		4		
члена этой последовательности имеет	3)	$a_n = \frac{1}{n}$	4) a_n	$=\frac{1}{(n+5)(n+1)}$
вид				
10. Какие из функций являются беско-	1)	$\frac{x}{x-2}$ $\cos(x-2)$	$\frac{x-}{2}$	2
нечно малыми в точке $x_0 = 2$?	ĺ	x-2	x	->
11.77	3)	$\frac{\cos(x-2)}{2}$	4) sin(x-2)
11. Последовательность задана рекур-	1)	5		
рентным соотношением $a_{n+1} = a_n \cdot a_{n-1}$;		-2		
$a_1 = -2$, $a_2 = 1$. Тогда четвертый член		2		
этой последовательности a_4 равен	4)	6		
12. Значение предела $\lim_{x\to 0} \frac{\sin 3x}{4x}$ рав-	1)	0	3)	1
$x \rightarrow 0$ $4x$	2)	1/4	4)	3/4
но	_/		-/	
13. Значение предела $\lim_{x\to 2} \frac{x^2 - 4}{x - 2}$ рав-	1)	0	3)	∞
13. Shadehue предела $\lim_{x\to 2} \frac{1}{x-2}$ pas-	2)	4	4)	2
но	_,	•	1)	2
14. Значение предела	1)	0,2	3)	0,3
$\lim_{x \to -3} \frac{x^2 + 4x + 3}{x^2 + x - 6}$ pabho	2)	0,4	4)	0,5
		, 		,
15. Значение предела $\lim_{x \to \infty} \frac{5x^2 + 3x - 2}{2x^2 + x + 8}$	1)	2,5	3)	0
$x \to \infty \ 2x^2 + x + 8$	2)	1	4)	∞
равно				
16. Для дробно-рациональной функции	1)	x=-2	3)	x=0
$y = \frac{x^2 - 1}{x^2 + 2x}$ точками разрыва являют-		x=1	4)	x=-1
17. Towaru papu pa dayayayay	1)	5 1		
17. Точками разрыва функции	1)	-5 и 4		

$y = \frac{x+1}{x^2 + 9x + 20}$ являются	2) 5 и 4 3) 5 и -4 4) -5 и -4
18. Точками разрыва функции	1) -11 и 1
3x-4	2) 11 и 1
$y = \frac{1}{x^2 + 10x - 11}$ являются	(3) 11 и -1
$\lambda + 10\lambda - 11$	4) -11 и -1

Тема 2. Дифференциальное исчисление функций одной переменной

1. Установите соответствия между функциями и их производными	A) $\frac{2x}{1+x^4}$ B) $\cos(5x+1)$
1. e^{3x} 2. $y=\sin(5x+1)$ 3. $y=\arctan(5x+1)$	C) $5\cos(5x+1)$ D) $3x \cdot e^{3x-1}$ E) $3e^{3x}$
2. Произронная произредения	1) $4x^3 \cos x$
2 . Производная произведения	2) $x^3(4\sin x + x\cos x)$
$x^4 \sin x$ равна	3) $x^3(\sin x + x\cos x)$
	$4) x^3 (4\sin x - x\cos x)$
3. Если $y = UV$, то $y' =$	1) U'V'
C. Econi y C v , 10 y	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3) $U'V + UV'$
	4) $U'+V'$
4. Если α - угол наклона касательной к	1) $tg\alpha$
графику функции $y=f(x)$, то $y'=$	$2)$ $ctg\alpha$
	$ 3\rangle \alpha$
	4) $\sin \alpha$
5. Производная второго порядка функции $y = \ln 3x$ имеет вид	1) $-\frac{1}{x^2}$ 2) $\frac{1}{x^2}$
	$\begin{vmatrix} 1) & -\frac{1}{x^2} & 2) & \frac{1}{x^2} \\ 3) & -\frac{1}{3x^2} & 4) & \frac{3}{x} \end{vmatrix}$
6. Производная частного $y = \frac{x+3}{x+2}$	1) $\frac{-1}{x+2}$ 2) $\frac{-1}{(x+2)^2}$
равна	3) $\frac{2x+5}{(x+2)^2}$ 4) $\frac{1}{(x+2)^2}$
7. Уравнение касательной к графику	1) $2x - y + 16 = 0$
функции $y = x^3$ в точке (2; 8) имеет	y-12=0
вид	3) $12x - y - 24 = 0$
	4) $2x - y - 8 = 0$
	5) 12x - y - 16 = 0

Q Zavou Trumanua Maranua II way manuu	
8. Закон движения материальной точки	1) 11
имеет вид $x(t) = 4 + 10t + e^{7-t}$, где $X(t)$	2) 9
координата точки в момент времени t.	3) 13
Тогда скорость точки при t = 7 равна	4) 75
9. Дан радиус-вектор движущейся в	1) $2\bar{i} + 2\bar{j}$
пространстве точки	$\begin{vmatrix} 2i + 2j \\ 2i + 2\bar{j} + \bar{k} \end{vmatrix}$
$\overline{R(t)} = t^3 \cdot \overline{t} + t^2 \cdot \overline{j} + t \cdot \overline{k}$, тогда вектор	
ускорения в момент времени t = 1	$6\bar{i} + 2\bar{j}$
имеет вид	$ 4\rangle \qquad \bar{i} + \bar{j} + \bar{k}$
10. Найти производную функции	
$y = x^3 \ln 3x$	1) $3x^2 \ln 3x + x^2$
y = x III $3x$	$ 2) 3x^2$
	$ 3\rangle \qquad x^2$
	$4) 9x^2 \ln x + 3x^3$
11 Найти произродини функции	(4) 9λ $\text{III}\lambda + 3\lambda$
11. Найти производную функции	1) $-2xe^{x^2+1}$
$y = e^{x^2 + 1}$	2
	$2) xe^{x^2+1}$
	$ 3 \rangle e^{x^2+1}$
	2.1
10.0	4) $2xe^{x^2+1}$
12. Значение производной функции	1) 13
$y = \frac{10x + 1}{e^{3x}}$ в точке x=0 равно	2) 10
e^{3x}	3) 7
	4) 9
13. Производная второго порядка	$-4\sin 2x$
ϕ ункции $y = \sin 2x$ равна	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ $4\sin 2x$
	$8\sin x$
	$4) -8\sin x$
14. Найти точку максимума функции	,
$y = 2x^3 + 3x^2 - 72x + 7$	1) x=-4
y = 2x + 3x = 72x + 7	2) x=-3
	3) x=3
15 Hawara and American	(4) x=4
15. Найти точку минимума функции	1) x=-3
$y = x^3 - 6x^2 - 63x + 14$	2) x=3
	3) x=7
	4) x=-7
16. Найти точку перегиба функции	1) x=2
$y = x^3 - 24x^2 + 3x + 7$	$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad x=8$
	$\begin{vmatrix} 27 & x & 6 \\ 3 & x = 6 \end{vmatrix}$
	4) x=12
17. Необходимым условием максимума	1) $f'(x_0) > 0$
	/ J (**U/ -

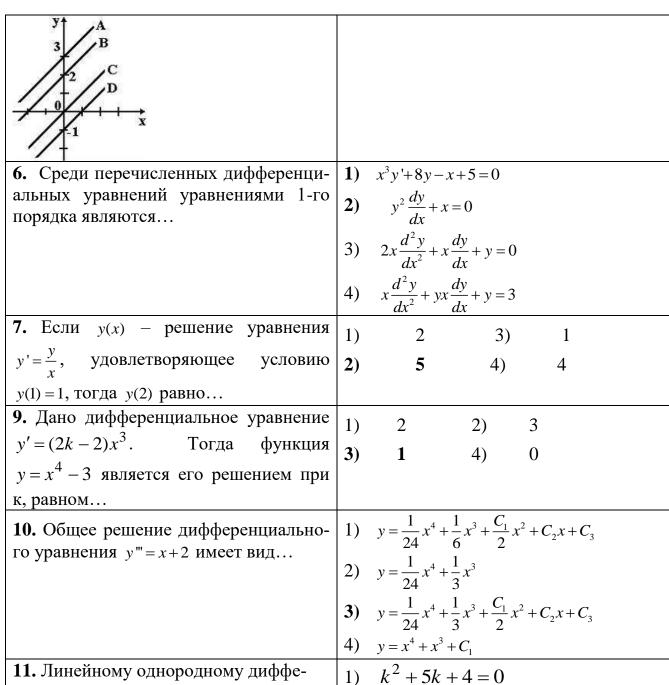
дифференцируемой функции y=f(x) в	2)	$f'(x_0)$	≠ 0		
точке х ₀ является	3)	$f'(x_0)$	< 0		
	4)	$f'(x_0)$	=0		
18. Необходимым условием минимума	1)	$f'(x_0)$	=0		
дифференцируемой функции y=f(x) в	2)	$f'(x_0)$	$\neq 0$		
точке х ₀ является	3)	$f'(x_0)$	< 0		
	4)	$f'(x_0)$	>0		
19. Необходимым условием точки пе-	1)	$f''(x_0)$	0 = 0		
региба дважды дифференцируемой функции $y=f(x)$ в точке x_0 является	2)	$f''(x_0)$	$\neq 0$		
	3)	3) $f''(x_0) < 0$			
	4)	$f''(x_0)$	>0		
20. Длина промежутка убывания функ-	1)	1	2)	2	
ции $y = x^3 - 12x^2 + 9$ равна	3)	3	4)	4	
21. Длина промежутка возрастания	1)	5	2)	3	
функции $y = -\frac{x^3}{3} + \frac{11}{2}x^2 - 28x - 7$ рав-	3)	5 2	4)	1	
на					

Тема 3. Интегральное исчисление функций одной переменной

1. Неопределенный интеграл – это	 1) числовой интервал 2) уравнение 3) совокупность функций 4) число
2. Как называется функция $F(x)$ по отношению к функции $f(x)$, если $F'(x) = f(x)$?	 производная характеристическая первообразная исходная
3. Множество первообразных функций $f(x) = \frac{\sin x dx}{\cos^2 x + 1}$ имеет вид	1) $-arctg(\cos x) + C$ 2) $arctg(\cos x) + C$ 3) $\ln \cos^2 x + 1 + C$ 4) $\cos^2 x + 1 + C$
4. Множество первообразных функций $f(x) = e^{3x}$ имеет вид	1) $-\frac{1}{3}e^{3x} + C$ 2) $\frac{1}{3}e^{3x} + C$ 3) $e^{3x} + C$ 4) $3e^{3x} + C$
5. Неопределенный интеграл $\int \sin(5x+3)dx$ равен	1) $-\cos(5x+3)+C$ 2) $-\cos(5x^2/2+3x)+C$ 3) $-1/5\cos(5x+3)+C$

	4)	-1/5cc	$os(5x^2/$	$\frac{1}{2+3}$	(x) + C	
		$\ln x^4 $	`		<u>, </u>	
6. Неопределенный интеграл $\int \frac{1}{x^4 - 1}$		3/4ln 2		$\cdot C$		
равен	3)	$3\ln x^4 $	-1 +C			
	4)	1/4 ln x	$ c^4 - 1 +$	C		
7. Неопределенный интеграл	1)	$1/2\sin 2$				
$\int x^2 3^{x^3} dx$ равен	2)	1/20ln	$\frac{2x+5}{2x-5}$	+ <i>C</i>		
	3)	-1/20l	$\ln \left \frac{2x+5}{2x-5} \right $	+C		
	4)	$\frac{3^{x^3}}{3\ln 3}$	+ <i>C</i>			
8. Множество первоооразных функции	1)	$\frac{x^2}{2} + 10x$	c+C	8) \mathbf{x}	$+10\ln x+2 +C$	
$f(x) = \frac{x+10}{x+2} \text{имеет вид}$	2)	$x+8\ln x$	+2 +C	4) x	$-8\ln x+2 +C$	
9. Формула <i>b</i>	1)					
$\int f(x)dx = F(x)\Big _a^b = F(b) - F(a) \text{ называ-}$	2) 3)	Ньютона-Лейбница Гаусса				
<i>а</i> ется формулой	4)	•	мера			
10. Чему равен определенный интеграл	1)	a	2))	F(a)	
$\int_{a}^{a} f(x)dx?$	3)	0	4)		1	
11. Определенный интеграл	1)	118	2)	12	23	
$\int_{1}^{5} (3x^2 + 2)dx$ равен	3)	132	4)		38	
12. Определенный интеграл $\int_{1}^{2} \frac{2t+1}{t^2+t} dt$	1)	3+ln3	2)		ln4	
12. Определенный интеграл $\int_{1}^{2} t^{2} + t$	3)	ln3	4)	-]	l+ln6	
равен						
13. Определенный интеграл $\int_{1}^{e} \frac{\ln^{3} x}{x} dx$	1)	1	2)	1/3		
равен	3)	1/4	4)	4/3		
14. Вычислить площадь фигуры, ограниченной графиком функции	1)	12	2)	14		
$y = x^2 + 2x$, осью Ох и прямой x=3	3)	15	4)	18		
15. Вычислить площадь фигуры, ограниченной графиком функции	1)	7/3	2)	2/3		

x=1					
16. Значение интеграла $\int_{0}^{1} (e^{x} - 1)e^{x} dx$	1)	-0,5(e-	$-1)^2$	3)	$0.5(e-1)^2$
равно	2)	$-0.5(e-1)$ $\frac{1}{4}(e-1)$	1)3	4)	e(e-1)
17. Несобственный интеграл $\int_{4}^{+\infty} \frac{6}{x^2} dx$	1)	0	2)	1	
$4 x^2$	2)	2	3)	∞	
равен					
18. Сходящимися являются несоб-	1)	$\int_{-\infty}^{+\infty} x^{-2} dx$	2)	$\int_{\mathbf{r}}^{+\infty} \mathbf{r}^{-\frac{1}{2}} d\mathbf{r}$	$3) \int_{1}^{+\infty} x^{-\frac{1}{4}} dx$
ственные интегралы	1)	$\int_{1}^{\infty} x dx$	2)	$\int_{1}^{\infty} x dx$	$\int_{1}^{2} x dx$
	4)	$\int_{1}^{+\infty} x^{-4} dx$			


Тема 4. Функции нескольких переменных. Элементы теории функций комплексного переменного

1. Частная производная по х от функ-	1)	$z_x' = 15x^2 + 2x$		
ции $z = 5x^3 + y^2 + x^2 - 6y + 17$ рав-		$z'_{x} = 15x^{2} + 2x + 2y$	· – 6	
на		$z_x' = 2y - 6$	J	
		•		
	4)	$z_x' = \frac{5}{4}x^4 + \frac{1}{3}x^3 + 1$	7 <i>x</i>	
2. Частная производная второго по-	1)	$z''_{xy} = 4y^3$	2)	$z_{xy}'' = 2xy^2$
рядка z_{xy}'' от функции $z = x^2 y^3$ рав-	3)	$z''_{xy} = 4y^{3}$ $z''_{xy} = 2xy^{3} + 3x^{2}y^{2}$	2 4)	$z_{xy}'' = 6xy^2$
на				
3. Найти частную производную z'_x в	1)	-1		
y+3	2)	-2		
точке (2; 2) от функции $z = \frac{y+3}{x^3-3}$	3)	-1,6		
x - 3	4)	-2,4		
4. Что определяется выражением	1)	Условный экст	ремум	1
$z_x'\cos\alpha + z_y'\cos\beta?$	2)	Градиент		
	3)	Частный дифф	еренг	циал
	4)	Производная	_	
5. Частная производная второго по-				2
рядка z''_{xy} функции $z = x^2 y^3$ равна	1)	$4y^3$	2)	$2xy^2$
,	3)	$2xy^3 + 3x^2y^2$	4)	$6xy^2$
6. Точкой экстремума функции	1)	M(2; -4)		
$z = 9x^2 + y^2 + 18x - 4y + 7$ является	2)	M(1; -2)		
точка	3)	M(-2; 4)		
	4)	M(-1; 2)		
7. Как называется выражение	1)	Условный экст	nemvi	Л
$\{z'_x; z'_y\}?$	2)	Градиент	2111	-
	<i>-</i>	т радисит		

	3)	Частный,	диффер	енциал
	4)	Производ	ная по	направлению
8. Найти критическую точку функции	1)	M(2; 5)		
$z = 2x^2 - 2xy + 3y^2 - 18x - 16y + 7$	2)	M(3;7)		
, , ,	3)	M(3;5)		
	4)	M(7;5)		
9. Частная производная функции	1)	0		
$z = x^4 \cos^2 y$ по переменной у в точке	2)	4		
$M\left(1,\frac{\pi}{2}\right)$ равна	3)	-1		
M(1,2)	4)	1		
10. Линиями уровня функции	1)	параболы	3)	гиперболы
$z=(x^2-2y)^3$ являются	2)	прямые	4)	эллипсы

Тема 5. Дифференциальные и разностные уравнения

1. Общим решением дифференциаль-	1) $x^2 + 7$				
ного уравнения $y' = 2x$ является	2) $x^2 + C$				
	$3) \qquad x + C$				
	4) $x^2 + C_1 x + 7$				
2. Нахождение частных решений диф-	1) Бернулли				
ференциальных уравнений по началь-	2) Коши				
ным условиям называется решение за-	3) Лагранжа				
дачи	4) Лейбница				
3. Дифференциальное уравнение	1) линейным дифференциальным				
$y' = y^2 \cdot \cos x$ является	уравнением				
y y cos x ammerea	2) уравнением с разделяющимися				
	переменными				
	3) однородным дифференциальным				
	уравнением				
	4) уравнением Бернулли				
4. Из данных дифференциальных уравнений уравнениями Бернулли яв-	$1) \frac{dy}{dx} = \frac{y}{x} + \frac{y^5}{x^3}$				
ляются	$2) x \frac{dy}{dx} - y = y^2 e^x$				
	$3) y\frac{dy}{dx} + x^3 = 0$				
	$4) \frac{dy}{dx} - 3x^2 + y = 0$				
5. Дано дифференциальное уравне-					
ние $x y' = y$ при $y(1) = 1$. Тогда инте-	1) D 3) C				
гральная кривая, которая определяет					
решение этого уравнения, имеет вид	2) A 4) B				
	<u>-, , , , , , , , , , , , , , , , , , , </u>				

- ренциальному уравнению y'' + 5y' - 6y = 0 cootbetctbyet xaрактеристическое уравнение...
- 12. Линейному однородному дифференциальному уравнению y'' + 7y' + 12y = 0 cootbetctbyet xapakтеристическое уравнение...
- 13. Линейному однородному дифференциальному уравнению y'' + 3y' - 4y = 0 соответствует общее решение...

- 2) $k^2 + 5k 6 = 0$
- 3) $k^2 + 5k = 0$
- 4) $k^2 6 = 0$
- 1) $k^2 + 5k + 4 = 0$
- $2) \quad k^2 + 7k + 12 = 0$
- 3) $k^2 + 5k = 0$
- 4) $k^2 6 = 0$
- 1) $C_1 e^x + C_2 e^{5x}$
- 2) $C_1 e^x + C_2 e^{-4x}$
- 3) $C_1e^{2x} + C_2e^{5x}$

	4) $C_1 e^{3x} + C_2 e^{-5x}$
14. Частному решению неоднородного дифференциального уравнения $y'' - 5y' + 6y = x + 1$ по виду его правой	1) $f(x) = Ax^2 + Bx$ 3) $f(x) = Ae^{2x} + Be^{3x}$ 2) $f(x) = Ax + B$ 4) $f(x) = e^{2x} (Ax + B)$
части соответствует функция	
15. Дано линейное однородное дифференциальное уравнение	1) $C_1e^{2x} + C_2e^{-x}$ 3) $C_1e^{-2x} + C_2e^x$
y'' + y' - 2y = 0, тогда его общее реше-	2) $C_1e^{2x} + C_2e^x$ 4) $C_1e^{-2x} + C_2e^{-x}$
ние имеет вид	

Тема6. Ряды

1. Необходимое условие сходимости числового ряда $\sum_{n=1}^{\infty} u_n$ записывается в виде	1) $\lim_{n \to \infty} u_n > 0$ 2) $\lim_{n \to \infty} u_n < 0$ 3) $\lim_{n \to \infty} u_n \neq 0$ 4) $\lim_{n \to \infty} u_n = 0$
2 . Сумма числового ряда $\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n$ равна	1) $\frac{5}{4}$ 2) $\frac{1}{4}$ 3) $\frac{4}{5}$ 4) $\frac{1}{625}$
3. При каких значениях р обобщенный гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ является сходящимся?	1) p>1 2) p=1 3) p<1 4) p≠1
4 . Если $\lim_{n\to\infty} \left \frac{u_{n+1}}{u_n} \right = q$, то числовой ряд сходится при q равном	1) -2 3) -0,5 2) 0,5 4) 2
5. Для исследования сходимости числового ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$ следует применить	 признак Коши признак Даламбера признак Лейбница предельный признак сравнения
6. Для исследования сходимости числового ряда $\sum_{n=1}^{\infty} \frac{n^3 + n}{n^5 + 2n^2}$ следует применить	 предельный признак сравнения признак Даламбера признак Лейбница признак Коши
7. Укажите сходящиеся числовые ряды	1) $\sum_{n=1}^{\infty} \frac{1}{n+5}$ 2) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$

	3)	$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} $ 4	$\sum_{n=1}^{\infty} \frac{1}{n^3 + n}$	
8. Знакочередующийся ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n-1}$	1) 2) 3)	абсолютно условно схо расходится		
9. Радиус сходимости степенного ряда	1)	∞ 2)	16	
$\sum_{n=0}^{\infty} \frac{x^n}{4^n} $ paseH	3)	4 4)	1	
10. Радиус сходимости степенного ряда	1)	(0;10)	3)	(-10;0)
$\sum_{n=1}^{\infty} a_n x^n$ равен 10. Тогда интервал схо-	2)	(-10;10)	4)	(-5;5)
димости имеет вид				
11 . Если $f(x) = x^3 - 1$, то коэффициент	1)	0	3)	1
a_4 разложения данной функции в ряд	2)	0,25	4)	4
Тейлора по степеням $(x-1)$ равен				
12 . Дано дифференциальное уравнение $y' = y^2 - x$ при $y(0) = 1$. Тогда первые		$1+x+\frac{x^2}{2}$	3)	$1+x+\frac{x^5}{6}$
три члена разложения его решения в степенной ряд имеют вид		$1 + x + \frac{x^2}{2} + \frac{x^3}{6}$		
13. Дано дифференциальное уравнение	1)	$1+x+\frac{x^2}{2}$	3)	$1 + x + \frac{x^5}{}$
$y' = y^2 - x$ при $y(0) = 1$. Тогда первые		x^2 x^3	,	$\frac{6}{x^2}$
три члена разложения его решения в степенной ряд имеют вид	2)	$1 + x + \frac{x^2}{2} + \frac{x^3}{6}$	4)	$-1+x+\frac{x}{2}$

Тематика контрольных работ

1-10. Найти пределы функций, не пользуясь правилом Лопиталя.

1. a)
$$\lim_{x \to \infty} \frac{2x^2 - 3x + 1}{3x^2 + x + 4}$$
;

$$\lim_{x \to \infty} \frac{2x^2 - 3x + 1}{3x^2 + x + 4};$$

$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{2x^2 - x - 6};$$

$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{\sqrt{6x + 1} - 5};$$

$$r) \lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 4x};$$

B)
$$\lim_{x \to 4} \frac{2 - \sqrt{x}}{\sqrt{6x + 1} - 5}$$
;

$$\lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 4x};$$

$$\lim_{x\to\infty} \left(\frac{2x-3}{2x+5}\right)^{x-1}$$

2. a)
$$\lim_{x \to \infty} \frac{5x^2 - 2x + 1}{2x^2 + x - 3}$$
;

6)
$$\lim_{x \to -5} \frac{2x^2 + 15x + 25}{5 - 4x - x^2};$$

B)
$$\lim_{x\to 0} \frac{\sqrt{9+x} - \sqrt{9-x}}{x^2 + 6x}$$
; $\lim_{x\to 0} \frac{\sin 3x + \sin 5x}{6x}$;

$$\Gamma = \lim_{x \to 0} \frac{\sin 3x + \sin 5x}{6x};$$

$$\lim_{x \to \infty} \left(\frac{3x+2}{3x-4} \right)^{2-x}$$

3. a)
$$\lim_{x \to \infty} \frac{3-2x-x^2}{x^2+4x+1}$$
; 6) $\lim_{x \to -1} \frac{4x^2+7x+3}{2x^2+x-1}$;

6)
$$\lim_{x \to -1} \frac{4x^2 + 7x + 3}{2x^2 + x - 1}$$

B)
$$\lim_{x \to 1} \frac{3x-3}{\sqrt{8+x}-3}$$

B)
$$\lim_{x\to 1} \frac{3x-3}{\sqrt{8+x}-3}$$
; $\lim_{x\to 0} \frac{10x^2}{1-\cos x}$;

$$\lim_{x\to\infty} \left(\frac{4x+3}{4x-1}\right)^{2x-3}$$

4. a)
$$\lim_{x \to \infty} \frac{3x^2 - 5x + 4}{x^3 - x + 1}$$
; 6) $\lim_{x \to 3} \frac{2x^2 - 9x + 9}{x^2 - 5x + 6}$;

6)
$$\lim_{x \to 3} \frac{2x^2 - 9x + 9}{x^2 - 5x + 6}$$

B)
$$\lim_{x \to 1} \frac{\sqrt{5-x} - \sqrt{3+x}}{x - x^2}$$
; r) $\lim_{x \to 0} \frac{3xtgx}{\sin^2 x}$;

$$\lim_{x \to 0} \frac{3xtgx}{\sin^2 x}$$

$$\lim_{x \to \infty} \left(\frac{2x+5}{2x-1} \right)^{3-x}$$

5. a)
$$\lim_{x \to \infty} \frac{2x^2 + x - 4}{3 + x - 4x^2}$$
; 6) $\lim_{x \to 4} \frac{5x - x^2 - 4}{x^2 - 2x - 8}$;

6)
$$\lim_{x \to 4} \frac{5x - x^2 - 4}{x^2 - 2x - 8};$$

B)
$$\lim_{x\to 0} \frac{\sqrt{7+x}-\sqrt{7-x}}{5x};$$

$$\lim_{x\to 0} \frac{xtgx}{1-\cos x};$$

r)
$$\lim_{x\to 0} \frac{xtgx}{1-\cos x};$$

$$\lim_{x \to \infty} \left(\frac{5x-1}{5x+4} \right)^{2x+1}$$

6. a)
$$\lim_{x \to \infty} \frac{x^2 - 7x + 1}{3x^2 + x + 3}$$
; 6) $\lim_{x \to -2} \frac{x^2 - 2x - 8}{2x^2 + 5x + 2}$;

6)
$$\lim_{x \to -2} \frac{x^2 - 2x - 8}{2x^2 + 5x + 2};$$

B)
$$\lim_{x\to 0} \frac{\sqrt{4+x}-\sqrt{4-x}}{3x^2+x}$$
; $\lim_{x\to 0} \frac{\cos x-\cos^5 x}{4x^2}$;

$$\lim_{x\to 0} \frac{\cos x - \cos^5 x}{4x^2};$$

д)
$$\lim_{x\to\infty} ((3x-1)/(3x-4))^{2x}$$

7. a)
$$\lim_{x \to \infty} \frac{3x^2 + 5x + 4}{2x^2 - x + 1}$$
; 6) $\lim_{x \to 1} \frac{3x^2 - 2x - 1}{x^2 - 4x + 3}$;

6)
$$\lim_{x \to 1} \frac{3x^2 - 2x - 1}{x^2 - 4x + 3}$$

B)
$$\lim_{x \to 4} \frac{\sqrt{x^2 - 7} - 3}{x^2 - 4x}$$
;

$$\lim_{x\to 0} \frac{4x^2}{1-\cos 4x};$$

$$\lim_{x \to \infty} \left(\frac{2x-7}{2x-3} \right)^{4x+1}$$

8. a)
$$\lim_{x \to \infty} \frac{2x^3 - 2x + 1}{3x^2 + 4x + 2}$$
;

6)
$$\lim_{x \to -3} \frac{6 - x - x^2}{3x^2 + 8x - 3}$$
;

B)
$$\lim_{x\to 1} \frac{3x-3}{\sqrt{8+x}-3}$$
;

r)
$$\lim_{x\to 0} \frac{8x^2}{1-\sin^2 5x}$$
;

$$\lim_{x\to\infty} \left(\frac{4x+1}{4x-3} \right)^{1-2x}$$

9. a)
$$\lim_{x \to \infty} \frac{5-2x-3x^2}{x^2+x+3}$$
;

6)
$$\lim_{x\to 1} \frac{x^3-1}{5x^2-4x-1}$$
;

B)
$$\lim_{x\to 4} \frac{\sqrt{4x}-x}{x^2-16}$$
;

$$\lim_{x\to 0} \frac{tg^2 3x}{10x^2};$$

$$\lim_{x\to\infty} \left(\frac{5x-2}{5x+3}\right)^{3-2x}$$

10. a)
$$\lim_{x \to \infty} \frac{x^2 - 3x + 4}{2x^3 + 5x - 1}$$

$$\lim_{x \to \infty} \frac{x^2 - 3x + 4}{2x^3 + 5x - 1}; \qquad \qquad \text{6)} \quad \lim_{x \to 2} \frac{x^2 + 2x - 8}{8 - x^3};$$

B)
$$\lim_{x\to 0} \frac{2x}{\sqrt{10+x}-\sqrt{10-x}};$$

$$\lim_{x\to 0} x^2 ctg^2 3x;$$

$$\lim_{x\to\infty} \left(\frac{x-2}{x+3}\right)^{4-x}$$

11-20. Задана функция y = f(x). Установить, является ли данная функция непрерывной. В случае разрыва функции в некоторой точке найти ее пределы слева и справа, классифицировать характер разрыва. Изобразить схематично график функции.

11.
$$f(x) = \begin{cases} x+4, & x<-1, \\ x^2+1, & -1 \le x<1, \\ 2x, & x \ge 1. \end{cases}$$

12.
$$f(x) = \begin{cases} x+2, x \le -1, \\ x^2+1, -1 < x \le 1, \\ -x+3, x > 1 \end{cases}$$

11.
$$f(x) = \begin{cases} x+4, x < -1, \\ x^2 + 1, -1 \le x < 1, \\ 2x, x \ge 1. \end{cases}$$
12.
$$f(x) = \begin{cases} x+2, x \le -1, \\ x^2 + 1, -1 < x \le 1, \\ -x+3, x > 1 \end{cases}$$
13.
$$f(x) = \begin{cases} -x, x \le 0, \\ -(x-1)^2, 0 < x < 2, \\ x-3, x \ge 2. \end{cases}$$
14.
$$f(x) = \begin{cases} \cos x, x \le 0, \\ x^2 + 1, 0 < x < 1, \\ x, x \ge 1. \end{cases}$$
15.
$$f(x) = \begin{cases} -x, x \le 0, \\ x^2, 0 < x \le 2, \\ x+1, x > 2. \end{cases}$$
16.
$$f(x) = \begin{cases} -x, x \le 0, \\ \sin x, 0 < x \le \pi, \\ x-2, x > \pi. \end{cases}$$
17.
$$f(x) = \begin{cases} -(x+1), x \le -1, \\ (x+1)^2, -1 < x \le 0, \\ x, x > 0. \end{cases}$$

14.
$$f(x) = \begin{cases} \cos x, x \le 0, \\ x^2 + 1, 0 < x < 1, \\ x, x \ge 1. \end{cases}$$

15.
$$f(x) = \begin{cases} -x, x \le 0, \\ x^2, 0 < x \le 2, \\ x+1, x > 2. \end{cases}$$

16.
$$f(x) = \begin{cases} -x, x \le 0, \\ \sin x, 0 < x \le \pi, \\ x - 2, x > \pi. \end{cases}$$

17.
$$f(x) = \begin{cases} (x+1), & x \le 1, \\ (x+1)^2, & -1 < x \le 0, \\ x, & x > 0. \end{cases}$$

18.
$$f(x) = \begin{cases} -x^2, x \le 0, \\ tgx, 0 < x \le \frac{\pi}{4}, \\ 2, x > \frac{\pi}{4}. \end{cases}$$

$$\begin{cases}
2, x > \frac{\pi}{4}. \\
-2x, x \le 0, \\
x^2 + 1, 0 < x \le 1, \\
2, x > 1.
\end{cases}$$
20.
$$f(x) = \begin{cases}
-2x, x \le 0, \\
\sqrt{x}, 0 < x \le 1, \\
1, x \ge 4.
\end{cases}$$

20.
$$f(x) = \begin{cases} -2x, x \le 0, \\ \sqrt{x}, 0 < x \le 1, \\ 1, x \ge 4. \end{cases}$$

21-30. Найти производные $\frac{dy}{dx}$ следующих функций.

21. a)
$$y = \arccos \sqrt{x}$$
; 6) $y = \ln ctg \frac{x}{3}$;

B)
$$x = 2t^2 + t$$
, $y = \ln t$.

22. a)
$$y = \frac{x}{2}\sqrt{25 - x^2} + \frac{25}{2}\arccos\frac{x}{5}$$
; 6) $y = \exp(ctg 2x)$;

B)
$$x = \frac{1-t}{1+t^2}$$
; $y = \frac{2+t^2}{t^2}$

23. a)
$$y = \frac{1}{6} \ln \frac{x-3}{x+3}$$
; 6) $y = arcctg[exp(5x)]$;

B)
$$x = \sin^2 3t$$
, $y = \cos^2 3t$.

24. a)
$$y = \ln(x + \sqrt{x^2 + 1})$$
, 6) $y = \frac{1 - \cos 3x}{1 + \cos 3x}$;

B)
$$x = t^4 + 2t$$
, $y = t^2 + 5t$.

B)
$$x = t - \ln \sin t$$
, $y = t + \ln \cos t$.

26. a)
$$y = \frac{1}{2}ctg^2x + \ln\sin x$$
; b) $y = eps(\cos 3x)$.

B)
$$x = tgt, y = \frac{1}{\sin^2 t}$$
.

27. a)
$$y = \ln(\sqrt{x} - \sqrt{x-2}) + \sqrt{x^2 - 2x};$$
 6) $y = 3xecp(-x^{-2});$

B)
$$x = t^2 - t^3$$
, $y = 2t^3$.

28. a)
$$y = \ln \cos 2x - \ln \sin 2x$$
; 6) $y = 2^{ctg^2 3x}$;

B)
$$x = \cos^3 t$$
, $y = \sin^3 t$.

29. a)
$$y = \arccos \frac{x-1}{x+1}$$
; 6) $y = \ln ctg \sqrt{x+2}$;

B)
$$x = \sin t, \ y = 3\cos^2 t.$$

30. a)
$$y = \frac{tg^3x}{3} - \frac{ctg^2x}{2} + \ln\sin x;$$

$$6) \quad y = x \exp\left(\frac{1}{x}\right);$$

B)
$$x = 2t - t^2$$
, $y = 2t^3$.

31-40. Найти пределы функции, применяя правило Лопиталя.

31.
$$\lim_{x \to \frac{\pi}{6}} \frac{1 - 2\sin x}{1 - \sqrt{3}tgx}.$$

$$32. \lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{1 - tgx}.$$

33.
$$\lim_{x\to 0} \frac{1-e^{2x}}{\ln(1-2x)}.$$

34.
$$\lim_{x\to 1} \frac{1-x^2}{\ln x}$$
.

35.
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}.$$

36.
$$\lim_{x\to 0} x^3 \ln x$$
.

37.
$$\lim_{x\to 0} \left(\frac{1}{e^x-1}-\frac{1}{x}\right)$$
.

38.
$$\lim_{x\to\infty} \frac{x^2}{e^{2x}}$$
.

39.
$$\lim_{x \to 0} \frac{x + \ln(1+x)}{e^x - 1}.$$

40.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\ln(1-x)}$$
.

41-50. Методами дифференциального исчисления: а) исследовать функцию y = f(x) для $\forall x \in R$, и по результатам исследования построить ее график; б) найти наименьшее и наибольшее значение заданной функции на отрезке [a;b].

41. a)
$$y = \frac{4x}{4+x^2}$$
,

42. a)
$$y = \frac{x^2 - 1}{x^2 + 1}$$
,

43. a)
$$y = \frac{x^3}{x^2 + 1}$$
,

44. a)
$$y = \frac{x^2 - 5}{x - 3}$$
,

45. a)
$$y = \frac{2-4x^2}{1-4x^2}$$
,

46. a)
$$y = (x-1)^{3x+1}$$
,

47. a)
$$y = \frac{\ln x}{\sqrt{x}}$$
,

48. a)
$$y = e^{\frac{1}{2-x}}$$
,

49. a)
$$y = xe^{-x^2}$$
,

50. a)
$$y = \frac{x^2 - 3}{x^2 + 9}$$
,

51-60. Найти неопределенные интегралы. В случаях а), б), в) результат проверить дифференцированием.

$$\mathbf{51.} \quad \mathbf{a)} \quad \int e^{\cos^2 x} \sin 2x dx,$$

$$B) \int \frac{dx}{x^3 + 27}$$

$$\int \sin^2 x \cos^3 x dx$$

6)
$$\int xarctgxdx$$
,

$$\Gamma) \qquad \int \frac{\sqrt[3]{x+1}}{1+\sqrt[3]{x+1}} \, dx,$$

52. a)
$$\int \frac{x^2 dx}{(x^3 + 4)^6}$$
,

B)
$$\int \frac{xdx}{x^3 + 8}$$

$$\exists x \in \int \cos^2 x \cdot \sin^3 x dx$$

$$6) \quad \int e^x \ln(1+e^x) dx,$$

$$\Gamma$$
) $\int \frac{dx}{\sin x \cos x}$,

53. a)
$$\int \frac{x^2 dx}{\sqrt{1-x^6}}$$
,

B)
$$\int \frac{(5x+6)dx}{x^3+x^2+x+1}$$

$$д) \int \sin^3 x \cos^3 x dx$$

$$6) \quad \int x 2^x dx,$$

$$\Gamma) \qquad \int \frac{dx}{\sqrt{x+1} + \sqrt[3]{(x+1)^2}},$$

54. a)
$$\int \frac{dx}{\sin^2 x (2ctex + 1)}$$
;

B)
$$\int \frac{dx}{x^3 - x^2 + 2x - 2}$$
;

$$\exists x \cos^2 x \cos^2 x dx$$

6)
$$\int \frac{x \arccos x}{\sqrt{1-x^2}} dx,$$

$$\Gamma) \qquad \int \frac{x + \sqrt[3]{1+x}}{\sqrt{x+1}} \, dx,$$

$$55. \quad a) \quad \int \frac{\sin 2x dx}{5 - \cos 2x}$$

$$B) \int \frac{(x+1)dx}{x^3 - 2x^2 + x}$$

$$\mathbf{g}$$
) $\int \cos^4 x dx$

$$\int x^2 e^{5x} dx,$$

$$\Gamma$$
) $\int \frac{\sin x dx}{1 + \sin x}$,

$$56. \quad a) \quad \int \frac{\cos x dx}{\sqrt{\sin^3 x}},$$

B)
$$\int \frac{(2x+1)dx}{x^3+3x^2-4x}$$

$$\exists$$
 $\int \sin^4 x dx$

57. a)
$$\int \frac{\arcsin x dx}{\sqrt{1-x^2}}$$

$$\int x \arccos \frac{1}{2} dx,$$

$$\Gamma) \qquad \int \frac{(\sqrt[4]{x} - 1)dx}{(\sqrt{x} - 2)\sqrt[4]{x^3}},$$

$$\int x \ln(x^2 + 1) dx,$$

$$B) \int \frac{xdx}{x^4 + 5x^2 + 6}$$

 $\exists x \cos^2 x dx$

$$\Gamma) \qquad \int \frac{\sqrt[6]{x+5}}{1+\sqrt[3]{x+5}} \, dx,$$

58. a)
$$\int \frac{arctgx}{x^2 + 1} dx,$$

$$6) \quad \int x \cos 2x dx,$$

B)
$$\int \frac{xdx}{x^4 - 81}$$

$$\Gamma$$
) $\int \frac{dx}{\cos x + 3\sin x}$,

$$\chi$$
 $\sin^2 x \cos^5 x dx$

$$\int x \ln^2 x dx,$$

59. a)
$$\int \frac{\cos x dx}{\sqrt[3]{8 + 3\sin x}}$$
,

$$\int x \ln^2 x dx,$$

B)
$$\int \frac{(x^2 + x - 1)}{x^4 + 3x^2 - 4} dx$$

$$\Gamma) \qquad \int \frac{(\sqrt{x}+1)(\sqrt[6]{x}-1)}{\sqrt[3]{x+1}} dx,$$

$$\exists x \cos^4 x dx$$

$$6) \quad \int x^2 \sin 3x dx,$$

60. a)
$$\int \frac{\sqrt{3 + \ln x}}{x} dx,$$

$$\int x^2 \sin 3x dx,$$

B)
$$\int \frac{(x^3 + x)dx}{x^4 + 5x^2 + 6}$$

$$\Gamma) \qquad \int \frac{dx}{\sin x + 2\cos x + 1},$$

$$\int \sin^4 x \cos^3 x dx$$

61-70. Вычислить определенные интегралы.

$$\mathbf{61.} \int_{0}^{\frac{\pi}{2}} x \sin x dx.$$

62.
$$\int_{0}^{1} xarctgxdx$$

$$63. \int_{-\infty}^{2} \frac{\ln x}{x} dx.$$

64.
$$\int_{0}^{1} \frac{5x+1}{x^2+2x+1} dx$$

65.
$$\int_{0}^{\pi} \sin 2 \cos^2 x dx$$
.

$$66. \int_{1}^{2} \sqrt{x} \ln x dx$$

$$\mathbf{67.} \quad \int\limits_{0}^{\pi/2} \frac{dx}{\sin x + \cos x}.$$

68.
$$\int_{0}^{1} x \ln(1+x) dx$$

69.
$$\int_{0}^{1} \frac{dx}{x^2 + x + 1}.$$

70.
$$\int_{0}^{\sqrt{2}/2} \frac{x dx}{\sqrt{1-x^4}}.$$

71-80. Вычислить несобственный интеграл или доказать, что он расходится.

71.
$$\int_{0}^{\infty} x^{2} e^{-3^{3}} dx$$

72.
$$\int_{1}^{\infty} \frac{x^2 dx}{1 + x^6}$$

73.
$$\int_{-1}^{\infty} \frac{dx}{x^2 + 2x + 2}$$

74.
$$\int_{0}^{1} \frac{x dx}{\sqrt{1-x^2}}$$

$$75. \int_{-\infty}^{0} xe^{x} dx$$

$$76. \int_{1}^{\infty} \frac{dx}{(1+x)\sqrt{x}}$$

$$77. \int_{2}^{\infty} \frac{dx}{x \ln^2 x}$$

$$78. \int_{\sqrt{3}}^{\infty} \frac{xdx}{x^4 + 9}$$

$$79. \int_{2}^{\infty} \frac{dx}{x\sqrt{x-1}}$$

80.
$$\int_{-\infty}^{1} \frac{dx}{x^2 + 4x + 13}$$

81-90. Вычислить площадь фигуры, ограниченной заданными линиями. Сделать чертеж.

81.
$$x^2 + 2y = 0$$
, $5x + 2y - 6 = 0$

82.
$$x^2 - 2y = 0$$
, $x - 2y + 6 = 0$

83.
$$x^2 - 2y = 0$$
, $x - 2y + 6 = 0$

84.
$$x^2 - 6y = 0$$
, $x + 6y - 12 = 0$

85.
$$x^2 + 2y = 0$$
, $2x - y - 3 = 0$

86.
$$2x + y^2 = 0$$
, $2x + 5y - 6 = 0$

87.
$$2x - y^2 = 0$$
, $2x - y - 6 = 0$

88.
$$2x - y^2 = 0$$
, $2x + y - 6 = 0$

89.
$$6x - y^2 = 0$$
, $6x + y - 12 = 0$

90.
$$x + y^2 = 0$$
, $x - 2y + 3 = 0$

91-100. Вычислить приближенное значение определенного интеграла $\int\limits_{b}^{a}f(x)dx$ с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления проводить с округлением до третьего десятичного знака.

91.
$$\int_{-2}^{8} \sqrt{x^3 + 16} dx$$
 92.
$$\int_{2}^{12} \sqrt{x^3 + 9} dx$$

93.
$$\int_{-3}^{7} \sqrt{x^3 + 32} dx$$
 94.
$$\int_{0}^{10} \sqrt{x^3 + 5} dx$$

95.
$$\int_{-1}^{9} \sqrt{x^3 + 2} dx$$
 96.
$$\int_{2}^{12} \sqrt{x^3 + 4} dx$$

97.
$$\int_{1}^{11} \sqrt{x^3 + 3} dx$$
 98.
$$\int_{-3}^{7} \sqrt{x^3 + 36} dx$$

99.
$$\int_{-2}^{8} \sqrt{x^3 + 8} dx$$
 100. $\int_{-2}^{8} \sqrt{x^3 + 11} dx$

101-110. Дана функция двух переменных z = f(x; y). Найти все частные производные первого и второго порядка.

101.
$$z = \frac{y}{x^2 - y^2}$$
. **102.** $z = \ln(x^2 - 4y^3)$.

103.
$$z = arctg \frac{y}{x}$$
. **104.** $z = e^{x^2y} - x^2y$.

105.
$$z = \cos(x^2 - y^2)$$
. **106.** $z = \arcsin \frac{y}{x^2}$.

107.
$$z = \ln(x^3 - 5y^2)$$
. **108.** $z = \sqrt{x^3 + x^2y + 1}$.

109.
$$z = \arcsin(x^2 y)$$
. **110.** $z = \arctan(x^2 y)$.

111-120. Даны функция z=f(x,y) и точка $M_1(x_1;y_1)$. С помощью полного дифференциала вычислить приближенно значение функции в данной точке. Вычислить точное значение функции в точке M_0 и оценить относительную погрешность вычислений.

111.
$$z = x^2 + 3xy + y^2$$
; $M_1(0.98;1.04)$.

112.
$$z = 2xy - 3y^2 + 5x$$
; $M_1(3,04;2,03)$.

113.
$$z = x^2 + y^2 + 2x - 2y;$$
 $M_1(0.94;1.04).$

114.
$$z = x^2 + y^2 + 4x - 2y$$
; $M_1(2,94;1,05)$.

115.
$$z = y^2 + 3xy + x$$
; $M_1(1,05;1,95)$.

116.
$$z = x^2 + 2xy + y^2$$
; $M_1(2,06;0,98)$.

Раздел II «Линейная алгебра»

Практические задачи:

1. Найти матрицу C= A · В т + 3E, если

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix},$$

где Е-единичная матрица соответствующего порядка.

2. Вычислить определитель

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 1 \\ 4 & 3 & -2 \end{bmatrix}$$

3. Решить матричное уравнение и сделать проверку

$$\binom{4-1}{2}$$
 $X = \binom{-2}{3} \binom{5}{-1}$

4. Решить матричное уравнение

$$3 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 6 & 3 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 2 & 0 \end{pmatrix} = 5 \cdot \begin{pmatrix} x_1 & x_2 \\ x_2 & x_4 \\ x_5 & x_6 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 1 & 1 \\ 2 & 3 \end{pmatrix}.$$

- 5. Найти матрицу, обратную к матрице $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$.
- 6. Решить систему уравнений, используя формулы Крамера и обратную матрицу

$$\begin{cases} x_1 + 2x_2 + x_3 = 8, \\ -2x_1 + 3x_2 - 3x_3 = -5, \\ 3x_1 - 4x_2 + 5x_3 = 10. \end{cases}$$

7. Решить систему уравнений методом Гаусса

$$\begin{cases} x_1 + 2x_2 + x_3 = 1, \\ 2x_1 + x_2 + x_3 = -1, \\ x_1 + 3x_2 + x_3 = 2. \end{cases}$$

- 8. Найти скалярное произведение векторов \vec{a} и \vec{b} , если \vec{a} = (5; 2; 0), \vec{b} = (-3; 4; 1).
- 9. Коллинеарны ли векторы $\vec{c_1}$ и $\vec{c_2}$, построенные по векторам \vec{a} и \vec{b} ? $\vec{a} = \{1, -2, 3\}, \vec{b} = \{3, -2, 3\}$ $\vec{c_1} = 2\vec{a} + 4\vec{b}, \vec{c_2} = 3\vec{b} \vec{a}$.

- 10. Вычислить площадь параллелограмма, построенного на векторах $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ $\vec{\mathbf{a}} = \vec{\mathbf{p}} + 2\vec{\mathbf{q}}, \vec{\mathbf{b}} = 3\vec{\mathbf{p}} - \vec{\mathbf{q}}, |\vec{\mathbf{p}}| = 1, |\vec{\mathbf{q}}| = 2, (\vec{\mathbf{p}} \wedge \vec{\mathbf{q}}) = \frac{\pi}{2}.$
- 11. Компланарны ли векторы \vec{a} , \vec{b} и \vec{c} ? $\vec{a} = \{2,3,1\}$, $\vec{b} = \{-1,0,-1\}$, $\vec{c} = \{2, 2, 2\}.$
- 12. Даны точки $M_1(4; -2; 6)$ и $M_2(1; 4; 0)$. Найти длину и направление вектора $\overline{M_1M_2}$. 13. Написать канонические и параметрические уравнения прямой, проходящей через точку A(4; 4; 6)6; 0) параллельно вектору $\vec{s} = \{-1; 5; 2\}$.
- 14. Определить острый угол между плоскостями, заданными уравнениями: x + 2y + 2z - 3 = 0 M 16x + 12y - 15z - 1 = 0.
- 15. Найти расстояние от точки M(-2; -4; 3) до плоскости 2x-y+2z+3=0.
- 16. Доказать параллельность прямых $\begin{cases} x = 2t + 5, \\ y = -t + 2, \\ z = t 7 \end{cases} \begin{cases} x + 3y + z + 2 = 0, \\ x y 3z 2 = 0. \end{cases}$
- 17. Даны две точки $\mathbf{M_1}(3;-1;2)$ и $\mathbf{M_2}(4;-2;-1)$. Написать уравнение плоскости, проходящей через точку M_1 перпендикулярно вектору $\overline{M_1M_2}$.
- 18. Доказать перпендикулярность прямых:

$$\frac{x}{1} = \frac{y-1}{-2} = \frac{z}{3} \left\{ \begin{array}{l} 3x + y - 5z + 1 = 0, \\ 2x + 3y - 8z + 3 = 0. \end{array} \right.$$

19. В некоторой отрасли m заводов выпускают n видов продукции. Матрица $A_{m \times n}$ задает объемы продукции на каждом заводе в первом квартале, матрица $B_{m \times n}$ – соответственно во втором; (a_{ij}, b_{ij}) – объемы продукции j – го типа на i – м заводе в 1-м и 2- м кварталах соответственно:

$$A = \begin{pmatrix} 2 & 3 & 7 \\ 1 & 2 & 2 \\ 4 & 1 & 5 \\ 2 & 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 4 & 1 \\ 4 & 3 & 2 \\ 5 & 2 & 4 \end{pmatrix}.$$

Найти:

- 1) объемы продукции;
- 2) прирост объемов производства во втором квартале по сравнению с первым по видам продукции и заводам;
- 3) стоимостное выражение выпущенной продукции за полгода (в долларах), если λ курс доллара по отношению к рублю.
- 20. Предприятие производит n видов продукции, объемы выпуска заданы матрицей $A_{1\times n}$. Цена реализации единицы i – го вида продукции в j – м регионе задана матрицей $B_{n \times k}$, где k – число регионов, в которых реализуется продукция. Найти ${\it C}$ – матрицу выручки по регионам, если $A_{1\times3} = (100\ 2000\ 100)$,

$$B_{3\times4} = \begin{pmatrix} 2 & 3 & 1 & 5 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 2 & 4 \end{pmatrix}.$$

21. Предприятие производит n видов продукции, используя m видов ресурсов. Нормы затрат ресурса i – го товара на производство единицы продукции j – го вида задана матрицей затрат $A_{m \times n}$. Пусть за определенный отрезок времени предприятие выпустило количество продукции каждого типа x_{ij} , записанное матрицей $X_{n\times 1}$. Определить S — матрицу полных затрат ресурсов каждого вида на производство всей продукции за данный период времени,

если
$$A_{4\times3} = \begin{pmatrix} 2 & 5 & 3 \\ 0 & 1 & 8 \\ 1 & 3 & 1 \\ 2 & 2 & 3 \end{pmatrix}, X_{3\times1} = \begin{pmatrix} 100 \\ 80 \\ 110 \end{pmatrix}.$$

22. Три завода выпускают четыре вида продукции. Необходимо: 1) найти матрицу выпуска продукции за квартал, если заданы матрицы помесячных выпусков A_1 , A_2 , A_3 ; 2) найти матрицы приростов выпуска продукции за каждый месяц B_1 и B_2 и проанализировать результаты, если

$$A_1 = \begin{pmatrix} 2 & 3 & 1 & 2 \\ 4 & 2 & 2 & 1 \\ 5 & 4 & 4 & 2 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 4 & 2 & 2 \\ 3 & 3 & 3 & 2 \\ 4 & 5 & 4 & 3 \end{pmatrix}, A_3 = \begin{pmatrix} 2 & 5 & 3 & 1 \\ 3 & 4 & 3 & 1 \\ 4 & 4 & 4 & 4 \end{pmatrix}.$$

23. Обувная фабрика специализируется по выпуску изделий трех видов: сапог, туфлей и ботинок; при этом используется сырье трех типов: S_1 , S_2 , S_3 . Нормы расхода каждого из них на одну пару обуви и объем расхода сырья на 1 день заданы таблицей:

Вид сырья	Нормы р	асхода сырья н	Расход сырья на 1 день,	
		усл. ед.	усл. ед.	
	Сапоги	Туфли Ботинки		
S_1	5	3	4	2700
S_2	2	1	1	800
S_3	3	2	2	1600

Найти ежедневный объем выпуска каждого вида обуви.

Вопросы для коллоквиума:

- 1) Что называется матрицей? Как определяются правила сложения матриц, умножения матрицы на число, умножения 2-х матриц?
 - 2) Что называется определителем 2-го и 3-го порядка?
 - 3) Что называется минором и алгебраическим дополнением элемента определителя?
 - 4) Каковы основные свойства определителей?
 - 5) Какие способы вычисления определителей больших порядков вы знаете?
 - 6) Что такое ранг матрицы?
 - 7) Как можно вычислить ранг матрицы с помощью элементарных преобразований.
- 8) Какая матрица называется обратной для данной матрицы? Для каких матриц существует обратная? Как можно найти обратную матрицу?
- 9) Какие системы линейных уравнений называются совместными, несовместными, определенными?
 - 10) Какие системы называются крамеровскими?
 - 11) Как можно найти решение крамеровской системы с помощью обратной матрицы?
 - 12) В чём состоит метод Крамера решения систем линейных уравнений?
- 13) Какова последовательность действий при решении системы линейных уравнений методом Гаусса?

- 14) При каком условии система линейных уравнений будет совместна (теорема Кронекера Капелли)?
- 15) При каком условии система линейных уравнений имеет единственное решение?
- 16) При каком условии система линейных уравнений имеет бесконечное множество решений?
- 17) Какие неизвестные в неопределённой системе называются свободными, а какие базисными? Что такое общее решение системы линейных уравнений?
- 18) При каком условии однородная система линейных уравнений с квадратной матрицей имеет только нулевое решение?

Контрольная работа №1.

- 1) Даны точки A_1 (3, 5, 5), A_2 (3, 7, -1), A_3 (2, 7, 8), A_4 (4, 9, 2) . Найти:
 - а) координаты и длину вектора $\overrightarrow{A_IA_2}$;
 - 6) $cos(\angle A_1A_2A_3)$;
 - Γ) $\Pi P_{\overline{A_2A_3}}\overline{A_2A_l}$;
 - B) $S_{\Delta A_{1}A_{2}A_{3}}$;
 - д) $V_{A_1A_2A_3A_4}$.
- 2) При каких значениях α и β вектор $\vec{a} = \alpha \vec{i} + \beta \vec{j} + 6 \vec{k}$ будет коллинеарен вектору \overrightarrow{AB} , если A(1,2,3), B(-1,3,5)?
- 3) Даны две вершины A(2, -3, -5), B(-1, 3, 2) параллелограмма ABCD и точка пересечения его диагоналей E(4, -1, 7). Найти координаты остальных вершин параллелограмма.
- 4) Докажите, что векторы $\vec{a} = (2, -3)$ и $\vec{b} = (1, 1)$ образуют базис на плоскости. Найти координаты вектора $\vec{c} = (9, -16)$ в этом базисе.
- 5) Доказать, что векторы $\vec{a} = 2\vec{i} + 5\vec{j} 4\vec{k}$, $\vec{b} = -\vec{i} + \vec{j} + 2\vec{k}$, $\vec{c} = \vec{i} 2\vec{k}$ компланарны.
- 6) Найти координаты единичного вектора, направленного по биссектрисе угла между векторами $\vec{a} = (-3, 0, 4)$ и $\vec{b} = (5, 2, 14)$.

Контрольная работа №2.

- 1) В **Д АВС**, где **А(1, -1), В(2, 1), С(1, 2)** найти:
 - а) уравнение прямой L_I , проходящей через точки A и B;
 - б) уравнение прямой $L_2 \perp L_I$ и проходящей через точку C;
 - в) уравнение прямой $L_3 \mid \mid L_1$ и проходящей через точку C;
 - г) точку пересечения прямых $\boldsymbol{L_1}$ и $\boldsymbol{L_2}$..

- 2) Привести уравнение $4x^2 + 8x 9y^2 72y = 464$ к каноническому виду. Определить тип кривой и сделать чертёж
- 3) Даны точки A(-1, 2) и B(2, 1). На оси абсцисс определить точку M(x, 0), чтобы прямые AM и BM были перпендикулярны. Записать уравнения этих прямых.
 - 4) Даны точки A (-3, 1, 1), B (1, 0, 1), C (0, 3, 2), D (1, 2, 0). Найти: уравнения прямой L_I , проходящей через точки A и D; уравнение плоскости P_I , проходящей через точки A, B, C; уравнения прямой L_2 , проходящей через точку D перпендикулярно плоскости P_I ; точку пересечения прямой L_2 с плоскостью P_I .
 - 5) Записать уравнение плоскости, в которой располагаются параллельные прямые

$$L_1$$
: $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-1}$ U L_2 :
$$\begin{cases} x = 3+4t, \\ y = 1+2t, \\ z = 4-2t. \end{cases}$$

Практические задания:

Практическое задание 1:

- 1) Даны матрицы $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$. Найти матрицу 2A 3B.
- 2) Умножить матрицы: $\begin{pmatrix} 3 & 0 \\ 7 & -1 \\ -2 & 4 \\ 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} 6 & -4 & -8 \\ 1 & 3 & 2 \end{pmatrix}.$
- 3) Вычислить определитель: $\begin{vmatrix} 0 & -1 & 0 \\ 1 & 2 & -2 \\ 3 & 0 & 2 \end{vmatrix}$.

Практическое задание 2:

1) Вычислить алгебраическое дополнение A_{23} определителя

$$\begin{vmatrix} 1 & 1 & 2 & 3 \\ -4 & -1 & -1 & -2 \\ -6 & 3 & -1 & -1 \\ 4 & 2 & 3 & -2 \end{vmatrix}.$$

2) Для матрицы $A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$ найти обратную матрицу и сделать проверку.

3) Для матрицы $A = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}$ найти обратную матрицу и сделать проверку.

Практическое задание 3:

- 1) Найти ранг матрицы: $\begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 3 & 0 \end{pmatrix}$.
- 2) Исследовать систему линейных уравнений методом Гаусса и найти все её решения, если они есть: $\begin{cases} 3x_1-2x_2-x_3=-1\\ 2x_1-x_2+x_3=2\\ -x_1-2x_2+2x_3=9 \end{cases}.$ $2x_1+x_2-2x_3=-4$
- 3) Решить методом Гаусса систему уравнений: $\begin{cases} 2x_1 + 3x_2 + x_3 + 2x_4 x_5 = 6, \\ 3x_1 + x_2 8x_3 + 3x_4 + 2x_5 = 15, \\ x_1 + 2x_2 + 2x_3 + x_4 + 6x_5 = 2. \end{cases}$

Практическое задание 4:

- 1) Даны точки A_1 (9, 5, 5), A_2 (-3, 7, 1), A_3 (5, 7, 8). Найти:
 - a) $cos(\angle A_1A_2A_3)$;
 - б) $\Pi P_{\overline{A_1A_2}} \overline{A_2A_I}$.
- 2) Пусть $\vec{a} = \vec{p} 3\vec{q}$, $\vec{b} = \vec{p} + 2\vec{q}$, $/\vec{p} = \frac{1}{3}$, $/\vec{q} = 1$, $\angle (\vec{p}, \vec{q}) = \frac{\pi}{3}$. Найти скалярное произведение $\vec{a} \cdot \vec{b}$.

Практическое задание 5:

- 1) Даны точки A_1 (9, 5, 5), A_2 (-3, 7, 1), A_3 (5, 7, 8), A_4 (6, 9, 2) . Найти:
 - a) $S_{\Delta A_1 A_2 A_3}$;
 - δ) $V_{A_1A_2A_3A_4}$.
- 2) Пусть $\vec{a} = \vec{p} 3\vec{q}$, $\vec{b} = \vec{p} + 2\vec{q}$, $|\vec{p}| = \frac{1}{3}$, $|\vec{q}| = 1$, $\angle (\vec{p}, \vec{q}) = \frac{\pi}{3}$. Найти площадь треугольника, построенного на векторах \vec{a} и \vec{b} .

Практическое задание 6:

1) Найти общее решение однородной системы и проанализировать его структуру (указать базис пространства решений, установить размерность

пространства):
$$\begin{cases} 7x_1 + 2x_2 - x_3 - 2x_4 + 2x_5 = 0 \\ x_1 - 3x_2 + x_3 - x_4 - x_5 = 0 \\ 2x_1 + 3x_2 + 2x_3 + x_4 + x_5 = 0 \end{cases}$$

2) Найти собственные значения и собственные векторы линейного

преобразования, заданного в некотором базисе матрицей
$$A: A = \begin{pmatrix} 0 & -4 & -4 \\ 2 & 0 & 2 \\ 0 & 6 & 4 \end{pmatrix}$$
.

Практическое задание 7:

- 1) Даны вершины треугольника ABC: A(2,1), B(-1,3), C(4,5). Найти:
 - а) уравнение стороны AC;
 - б) уравнение высоты, опущенной из вершины A на сторону BC;
- в) уравнение медиан треугольника и их точку пересечения; длину высоты, опущенной из вершины \boldsymbol{B} на сторону \boldsymbol{AC} .
- 2) Найти уравнение прямой, проходящей через точку пересечения прямых 3x 2y 7 = 0, x + 3y 6 = 0 и отсекающей на оси абсцисс отрезок, равный 3.

Практическое задание 8:

- 1) Уравнения линий второго порядка
- а) $9x^2 + 4y^2 72x 8y + 112 = 0$; б) $x^2 6x + 4y + 9 = 0$ привести к каноническому виду. Определить тип кривых и сделать рисунок.
- 2) Составить уравнение линии, каждая точка которой находится вдвое ближе к точке $A(I,\theta)$, чем к точке $B(-2,\theta)$. Привести его к каноническому виду и построить линию.

Практическое задание 9:

- 1) Даны точки A(-3,4,-7), B(1,5,-4), C(-5,-2,-14), D(-12,7,-1). Найти:
 - а) уравнение плоскости, содержащей грань ABC;
- б) уравнение прямой, проходящей через точку $m{D}$, и перпендикулярную грани $m{ABC}$;
 - в) высоту пирамиды, опущенной из вершины D на грань ABC.
 - 2) Даны точки A (2, 1, 1), B (1, 0, 1), C (0, 1, 2), D (1, 2, 0). Найти:
 - а) уравнения прямой L_I , проходящей через точки A и D;
 - б) уравнение плоскости P_I , проходящей через точки A, B, C;

- в) уравнения прямой L_2 , проходящей через точку D перпендикулярно плоскости P_I ;
 - г) точку пересечения прямой L_2 с плоскостью P_I .

Тестовые задания:

Входное тестирование (проверка остаточных знаний).

- 1. Результат вычисления (1,7+1,4)×(-1) равен...
 - a. 3,1
 - b. -3,1
 - c. 31
 - d. -31
- 2. Результат сложения дробей $\frac{1}{2} + \frac{1}{3}$ равен...
 - a. $\frac{2}{5}$
 - b. $\frac{5}{6}$
 - c. $\frac{1}{5}$
 - d. 1
- 3. Результат вычисления $\left(\left(\frac{1}{2} \right)^{-2} \right)^{\frac{1}{2}}$ равен...
 - a. 2
 - b. $\frac{1}{2}$
 - c. 4
 - d. -2
- 4. Решение уравнения 2x=3 равно...
 - a. $\frac{2}{3}$
 - b. $\frac{3}{2}$
 - c. $\frac{1}{2}$
 - d. $-\frac{3}{2}$
- 5. Решение неравенства $-2x \ge 3$ имеет вид...
 - a. $(-\infty; -1,5)$

b.
$$(-\infty;-1,5]$$

c.
$$[-1,5;+\infty)$$

d.
$$(-1,5;+\infty)$$

6. Решением уравнения $x^2+x=0$ является...

а.
$$x=0$$
 и $x=1$

с.
$$x=-1$$
 и $x=0$

d.
$$x=0$$
 или $x=1$

7. Вершина параболы $y=x^2+1$ находится в точке...

8. Решение неравенства $(x-1)^2 > 0$ имеет вид...

a.
$$(-\infty;+\infty)$$

b.
$$(-\infty;1) \cup (1;+\infty)$$

c.
$$[1;+\infty)$$

d.
$$(-\infty;1]$$

Промежуточное тестирование:

1. Даны матрицы $A = \begin{pmatrix} 3 & 4 \\ -2 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 5 & -4 \\ 1 & 3 \end{pmatrix}$, тогда матрица C = AB имеет

вид...

a.
$$\begin{pmatrix} 15 & -16 \\ -2 & 3 \end{pmatrix}$$

b.
$$\begin{pmatrix} 19 & -9 \\ 0 & 11 \end{pmatrix}$$
c. $\begin{pmatrix} 19 & 0 \\ -9 & 11 \end{pmatrix}$

$$c. \begin{pmatrix} 19 & 0 \\ -9 & 11 \end{pmatrix}$$

$$d. \begin{pmatrix} 23 & 16 \\ -3 & 7 \end{pmatrix}$$

2. Для матрицы A существует обратная, если она равна...

a.
$$\begin{pmatrix} 1 & 5 \\ 0 & 0 \end{pmatrix}$$

b.
$$\begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$$

c.
$$\begin{pmatrix} -1 & -5 \\ -2 & -9 \end{pmatrix}$$

d. $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$

3. Решение системы линейных уравнений $\begin{cases} 5x_1-2x_2=1\\ 2x_1+x_2=4 \end{cases}$ методом Крамера может иметь вид...

ра может иметь вид...¹
a.
$$x_1 = \frac{\begin{vmatrix} 5 & -2 \\ 2 & 1 \end{vmatrix}}{\begin{vmatrix} 5 & 1 \\ 2 & 4 \end{vmatrix}}$$
; $x_2 = \frac{\begin{vmatrix} 5 & -2 \\ 2 & 1 \end{vmatrix}}{\begin{vmatrix} -2 & 1 \\ 1 & 4 \end{vmatrix}}$
b. $x_1 = \frac{\begin{vmatrix} 1 & -2 \\ 4 & 1 \\ 5 & -2 \\ 2 & 1 \end{vmatrix}}$; $x_2 = \frac{\begin{vmatrix} 5 & 1 \\ 2 & 4 \\ \hline \begin{vmatrix} 5 & -2 \\ 2 & 1 \end{vmatrix}}$

c.
$$x_1 = \begin{vmatrix} -2 & 1 \\ 1 & 4 \\ \hline 5 & -2 \\ 2 & 1 \end{vmatrix}$$
; $x_2 = \begin{vmatrix} 1 & 5 \\ 4 & 2 \\ \hline 5 & -2 \\ 2 & 1 \end{vmatrix}$

d.
$$x_1 = \frac{\begin{vmatrix} 5 & 2 \\ 1 & 4 \end{vmatrix}}{\begin{vmatrix} 5 & -2 \\ 2 & 1 \end{vmatrix}}$$
; $x_2 = \frac{\begin{vmatrix} -2 & 1 \\ 1 & 4 \end{vmatrix}}{\begin{vmatrix} 5 & -2 \\ 2 & 1 \end{vmatrix}}$

4. Система линейных уравнений $\begin{cases} \lambda x_1 - 6x_2 = 7 \\ 5x_1 - 3x_2 = 8 \end{cases}$ имеет единственное решение, если λ **не равно**...

- a. -2,5
- b. 10
- c. -10
- d. 2,5

5. Базисное решение системы $\begin{cases} x_1 + 2x_2 + 3x_3 = 8 \\ 4x_1 - 5x_2 - x_3 = -7 \end{cases}$ может иметь вид...

- a. (-3;-2;0)
- b. (3;2;0)
- c. (-2;-3;0)

6. Площадь треугольника, построенного на векторах $2\stackrel{\rightarrow}{a}$ и $3\stackrel{\rightarrow}{b}$, можно вычислить по формуле...²

a.
$$S = \frac{1}{2} \begin{vmatrix} \rightarrow & \rightarrow \\ a \times b \end{vmatrix}$$

b.
$$S=3\vec{a}\times\vec{b}$$

c.
$$S=6$$
 $\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}$

c.
$$S=6\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \\ \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$$

d. $S=3\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \\ \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}$

7. Общее уравнение прямой, проходящей через точку A(-3;2)параллельно прямой x-5y+11=0, имеет вид...

a.
$$x-5y+13=0$$

b.
$$5x + y + 13 = 0$$

c.
$$x-5y-13=0$$

d.
$$5x + y - 13 = 0$$

8. Уравнение окружности с центром в точке C(-3;1) и радиусом R=2имеет вил...³

a.
$$(x+3)^2 + (y-1)^2 = 2$$
.

b.
$$(x-3)^2 + (y+1)^2 = 4$$

c.
$$(x-3)^2 + (y+1)^2 = 2$$

d.
$$(x+3)^2 + (y-1)^2 = 4$$

9. Мнимая полуось гиперболы $\frac{x^2}{9} - \frac{y^2}{4} = 1$ равна...

10. Общее уравнение плоскости, проходящей через точку A(1;-2;7)параллельно плоскости 5x - 3y - 2z + 9 = 0, имеет вид...

a.
$$5x - 3y - 2z + 15 = 0$$

b.
$$5x - 3y - 2z + 3 = 0$$

c.
$$5x-3y-2z+9=0$$

d.
$$5x - 3y - 2z + 6 = 0$$

Выходное тестирование:

- 1. Обратной для матрицы $A = \begin{pmatrix} 9 & 5 \\ 2 & 1 \end{pmatrix}$ является матрица...
 - a. $\begin{pmatrix} 1 & 5 \\ 2 & 9 \end{pmatrix}$
 - b. $\begin{pmatrix} 1 & -5 \\ -2 & 9 \end{pmatrix}$
 - c. $\begin{pmatrix} -1 & -5 \\ -2 & -9 \end{pmatrix}$
 - d. $\begin{pmatrix} -1 & 5 \\ 2 & -9 \end{pmatrix}$
- 2. Умножение матрицы A на матрицу B возможно, если они имеют вид...
 - a. $A = \begin{pmatrix} 8 & 4 \\ -2 & 1 \end{pmatrix}$ u $B = \begin{pmatrix} 5 & -4 \\ 1 & 3 \end{pmatrix}$
 - b. $A = \begin{pmatrix} 3 & 4 \\ -2 & 1 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$
 - c. $A = \begin{pmatrix} 3 & 4 \\ -2 & 1 \end{pmatrix}$ $\bowtie B = \begin{pmatrix} 3 & 1 \end{pmatrix}$
 - d. $A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ u $B = \begin{pmatrix} 5 & -4 \\ 1 & 3 \end{pmatrix}$
- 3. Система линейных уравнений $\begin{cases} 3x_1 x_2 = 1 \\ 5x_1 + \lambda x_2 = 2 \end{cases}$ не имеет решений, если
- λ равно...
 - a. -2,4
 - b. $\frac{5}{3}$
 - c. $-\frac{5}{3}$
 - d. 2,4
- 4. Даны точки A(4;-2;3) и B(3;2;-1), тогда скалярное произведение радиус-векторов этих точек равно...
 - a. 5
 - b. 9
 - c. -5
 - d. 19

- 5. Угловой коэффициент прямой, заданной уравнением 2x 5y 6 = 0, равен...⁴
 - a. $-\frac{2}{5}$
 - b. $\frac{5}{6}$
 - c. $\frac{2}{5}$
 - d. $-\frac{6}{5}$
- 6. Дано уравнение прямой 2x+3y-6=0, тогда уравнение этой прямой в отрезках имеет вид...⁵
 - a. $\frac{x}{-3} + \frac{y}{-2} = 1$
 - b. $\frac{x}{-2} + \frac{y}{-3} = 1$
 - c. $\frac{x}{2} + \frac{y}{3} = 1$
 - d. $\frac{x}{3} + \frac{y}{2} = 1$
- 7. Линейными операторами из преобразований $A(x)=(x_1; 2x_3; x_1), B(x)=(x_1; x_2; 2x_1-x_3), C(x)=(x_1; x_2+x_3; 3)$ являются...
 - a. C(x)
 - $b. \ A(x)$ и B(x)
 - с. все перечисленные
 - d. ни одно из перечисленных
 - 8. Центр окружности $x^2 + y^2 4x + 2y 4 = 0$ имеет координаты...
 - a. (-2;1)
 - b. (2;1)
 - c. (-2;-1)
 - d. (2;-1)
- 9. Уравнение параболы имеет вид $y^2 = 6x$, тогда директриса задается уравнением...
 - a. x = 12
 - b. x = -1.5
 - c. x = -3
 - d. x = 6

- 10. Фокусы эллипса лежат на оси абсцисс симметрично относительно начала координат, а длины полуосей равны соответственно 7 и 2. Тогда каноническое уравнение эллипса имеет вид...
 - a. $\frac{x^2}{49} \frac{y^2}{4} = 1$
 - b. $\frac{x^2}{49} + \frac{y^2}{4} = 1$
 - c. $\frac{x^2}{7} + \frac{y^2}{2} = 1$
 - d. $\frac{x^2}{4} + \frac{y^2}{9} = 1$
- 11. Даны точки A(2;-1;-3) и B(-5;0;-2). Тогда уравнение плоскости, проходящей через точку A и перпендикулярно вектору $\stackrel{\cdot}{AB}$, имеет вид...
 - a. 2x y 3z + 18 = 0
 - b. 7x y z 18 = 0
 - c. 2x y 3z 18 = 0
 - d. 7x y z + 18 = 0
- 12. Параметрические уравнения прямой, проходящей параллельно оси OY и проходящей через точку A(5;-1;-4), имеют вид...

$$\int x = 5$$

$$z = -4$$

$$z = -4$$

$$x = 5t$$

$$z = -4t$$

$$\int x = 5t$$

$$\int_{7}^{7} = -\Delta t$$

$$x = -5$$

роходящей чер
$$x = 5$$
a.
$$\begin{cases} x = 5 \\ y = t - 1 \\ z = -4 \end{cases}$$
b.
$$\begin{cases} x = 5t \\ y = -t + 1 \\ z = -4t \end{cases}$$
c.
$$\begin{cases} x = 5t \\ y = -1 \\ z = -4t \end{cases}$$
d.
$$\begin{cases} x = -5 \\ y = t + 1 \\ z = 4 \end{cases}$$

$$z = 4$$

Раздел III «Теория вероятностей и математическая статистика»

Задания для текущего контроля

Тема 10. Основные понятия и теоремы теории вероятностей

Вариант 1

- 1. Набирая номер телефона, абонент забыл две последние цифры. Какова вероятность набрать верный номер?
- 2. Среди 52 счетов 4 оформлены с ошибками. Ревизор наугад берет 3 счета. Какова вероятность того, что среди вынутых счетов будет а) точно один неправильно оформленный счет, б) хотя бы один неправильно оформленный счет?
- 3. Студенты двух групп выполняют контрольную работу по математике. В первой группе из 25 человек на «Отлично» выполнили 5, во второй группе из 27 человек 7. После проверки все работы сложены в одну папку. Наудачу извлеченная из папки контрольная работа выполнена на «Отлично». Найти вероятность того, что эта работа выполнена студентом второй группы?
- 4. В магазине 5 холодильников. Вероятность выхода из строя каждого холодильника в течение года равна 0,2. Найти вероятность того, что в течение года ремонта потребует: 4 холодильника.
- 5. Найти вероятность того, что при 400 испытаниях событие наступит ровно 104 раза, если вероятность его появления в каждом испытании равна 0,2.

Вариант 2

- 1. Бросают 3 игральных кости, какова вероятность того, что на них выпадет по одинаковому числу очков?
- 2. На склад поступило 15 кофемолок и 10 кофеварок. Для контроля наудачу взяли 3 вещи. Найти вероятность того, что среди взятых а) только одна кофемолка, б) хотя бы одна кофемолка.
- 3. В І ящике 20 деталей, из них 15 штук стандартные; во II-30 деталей, из них 24 стандартные; в III-10 деталей, из них 6 стандартные. Найти вероятность того, что наудачу извлеченная деталь из наугад выбранного ящика будет стандартной.
- 4. В магазине приобретено 5 телевизоров. Вероятность невыхода из строя в течении гарантийного срока для каждого равна 0,8. Определить вероятность того, что в течении гарантии 3 телевизора не выйдут из строя.
- 5. Найти вероятность того, что при 300 испытаниях событие наступит ровно 100 раза, если вероятность его появления в каждом испытании равна 0,6.

Вариант 3

- 1. Набирая номер телефона, абонент забыл две последние цифры, но он помнит, что они разные. Какова вероятность набрать верный номер?
- 2. Для аттестации из группы в 10 студентов отбирают произвольным образом двоих. Какова вероятность того, что будут отобраны: а) два вполне определенных человека, б) будет отобран хотя бы один из них?
- 3. Однотипные детали изготовляются на трех прессах: на первом -40% всех деталей, на втором 25%, остальные на третьем прессе. Брак в продукции прессов составляет 0.5%

- для первого пресса, 1% для второго, 2% для третьего пресса. Найти вероятность того, что наудачу выбранная и оказавшаяся бракованной деталь изготовлена на втором прессе.
- 4. В магазине 6 холодильников. Вероятность выхода из строя каждого холодильника в течение года равна 0,1. Найти вероятность того, что в течение года ремонта потребует: не более 1 холодильника.
- 5. Найти вероятность того, что при 200 испытаниях событие наступит ровно 75 раза, если вероятность его появления в каждом испытании равна 0,4.

Вариант 4

- 1. Бросают 3 игральных кости, какова вероятность того, что на них выпадет две шестерки?
- 2. На курсах повышения квалификации бухгалтеров учат определять правильность накладной. В качестве проверки преподаватель предлагает обучающимся проверить 10 накладных, 4 из которых содержат ошибки. Он берет наугад из этих 10 две накладные и просит проверить. Какова вероятность того, что они окажутся а) обе ошибочные, б) одна ошибочная, а другая нет?
- 3. В группе спортсменов 5 лыжников, 3 гимнаста и 2 шахматиста. Вероятность стать мастером спорта для лыжника 0,4, для гимнаста 0,3, для шахматиста 0,1. Выбранный наудачу спортсмен стал мастером спорта. Какова вероятность того, что это был лыжник?
- 4. По цели производят 5 выстрелов с вероятностью попадания в цель 0,75. Найдите вероятность трёх попаданий.
- 5. Найти вероятность того, что при 400 испытаниях событие наступит ровно 200 раза, если вероятность его появления в каждом испытании равна 0,7.

Тема 11, Тема 12, Тема 13, Тема 14.

Вариант 1

1. Построить многоугольник распределения дискретной случайной величины X, заданной законом распределения:

X	2	4	5	6
P	0,3	0,1	0,4	0,2

2. Найти дисперсию и среднее квадратическое отклонение случайной величины X, которая задана следующим законом распределения:

X	2	5	8	9
P	0,2	0,4	0,1	0,3

- 3. Найти математическое ожидание случайной величины X, распределенной равномерно в интервале (2;8).
- 4. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 10 и 2. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (12; 14).
- Случайная величина X задана плотностью распределения f(x) = 0.5x в интервале (0;2); вне этого интервала f(x) = 0. Найти математическое ожидание и среднее квадратическое

Вариант 2

1. Построить многоугольник распределения дискретной случайной величины X, заданной законом распределения:

X	2	5	8	9
P	0,2	0,4	0,1	0,3

2. Найти дисперсию и среднее квадратическое отклонение случайной величины X, которая задана следующим законом распределения:

X	2	4	5	6	
P	0,3	0,1	0,4	0,2	

- 3. Найти математическое ожидание случайной величины X, распределенной равномерно в интервале (0;6).
- 4. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).
- 5. Случайная величина X задана плотностью распределения f(x) = 2x в интервале (0;1); вне этого интервала f(x) = 0. Найти математическое ожидание и среднее квадратическое отклонение.

Вариант 3

1. Построить многоугольник распределения дискретной случайной величины X, заданной законом распределения:

X	3	5	7	9
P	0,1	0,2	0,4	0,3

2. Найти дисперсию и среднее квадратическое отклонение случайной величины X, которая задана следующим законом распределения:

X	2	4	6	9
P	0,5	0,1	0,1	0,3

- 3. Найти математическое ожидание случайной величины X, распределенной равномерно в интервале (3;5).
- 4. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 8 и 2. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (6; 10).
- 5. Случайная величина X задана плотностью распределения $f(x) = 3x^2$ в интервале (0;1); вне этого интервала f(x) = 0. Найти математическое ожидание и среднее квадратическое отклонение.

Вариант 4

1. Построить многоугольник распределения дискретной случайной величины X, заданной законом распределения:

X	2	4	6	9
P	0,5	0,1	0,1	0,3

2. Найти дисперсию и среднее квадратическое отклонение случайной величины X, которая задана следующим законом распределения:

X	3	5	7	9	
P	0,1	0,2	0,4	0,3	

- 3. Найти математическое ожидание случайной величины X, распределенной равномерно в интервале (7;11).
- 4. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 18 и 4. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (10; 15).
- 5. Случайная величина X задана плотностью распределения $f(x) = 4x^3$ в интервале (0;1); вне этого интервала f(x) = 0. Найти математическое ожидание и среднее квадратическое отклонение.

Тема 15. Статистическая гипотеза и Тема 16. Элементы корреляционного и регрессионного анализа

Вариант 1

1. Для выборки 7, -7, 2, 7, 7, 5, 5, 7, 5, -7 определите: а) размах выборки; б) объём выбороки; в) выборочное распределение; д) полигон частот; е) выборочное среднее; ж) выборочную дисперсию.

2. Построить гистограмму частот по данному распределению выборки.

		<u> </u>
Номер интервала	Частичный интервал	Сумма частот
1	10-15	2
2	15-20	4
3	20-25	8
4	25-30	4
5	30-35	2

3. По данному статистическому распределению выборки

Xi	4	5,8	7,6	9,4	11,2	13	14,8	16,6
$n_{\rm i}$	5	8	12	25	30	20	18	6

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

4. Вычислить коэффициент корреляции и оценить тесноту связи X и У.

	16									17
У	15,1	16,9	24	21,1	16,5	16,5	26,3	22,3	26,3	15,3

5. Составить уравнение регрессии у на х и построить полученную прямую по данным из задания 4.

Вариант 2.

- 1. Для выборки 5, 2, 8,- 2, 5,- 2, 0, 0, 8, 5 определите: а) размах выборки; б) объём выборочно выборочное распределение; д) полигон частот; е) выборочное среднее; ж) выборочную дисперсию.
- 2. Построить гистограмму частот по данному распределению выборки.

Номер интервала	Частичный интервал	Сумма частот
1	2-5	6
2	5-8	7
3	8-11	4
4	11-14	5
5	14-17	3

3. По данному статистическому распределению выборки

٠.	The Administry of Marie and Particular Services									
	Xi	7,6	8	8,4	8,8	9,2	9,6	10	10,4	
	$n_{\rm i}$	6	8	16	50	30	15	7	5	

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

4. Вычислить коэффициент корреляции и оценить тесноту связи X и У.

X	15	17	15	18	19	21	20	19	17	16
У	17,1	18,2	16,9	19,4	20,1	24,0	23,1	19,0	17,5	18,0

5. Составить уравнение регрессии у на х и построить полученную прямую по данным из задания 4.

Вариант 3

1. Для выборки 5, -3, 3, 5, 3, 6, 6, 5, 5, -3 определите: а) размах выборки; б) объём выборки; в) выборочное распределение; д) полигон частот; е) выборочное среднее; ж) выборочную дисперсию.

2. Построить гистограмму частот по данному распределению выборки.

Номер интервала	Частичный интервал	Сумма частот
1	5-7	2
2	7-9	3
3	9-11	9
4	11-13	5
5	13-15	1

3. По данному статистическому распределению выборки

Xi	10,4	10,5	10,6	10,7	10,8	10,9	11,0	11,1
$n_{\rm i}$	5	8	16	30	50	15	7	6

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

4. Вычислить коэффициент корреляции и оценить тесноту связи X и У.

X	12	10	13	11	10	14	15	16	13	12
У	27,9	22,0	30,5	25,4	24,1	34,0	35,2	39,2	29,7	28,0

- 5. Составить уравнение регрессии у на х и построить полученную прямую по данным из задания 4.
 - 6. Для выборки 5, 2, 8,- 2, 5,- 2, 0, 0, 8, 5 определите: а) размах выборки; б) объём выборки; в) выборочное распределение; д) полигон частот; е) выборочное среднее; ж) выборочную дисперсию.
 - 7. Построить гистограмму частот по данному распределению выборки.

Номер интервала	Частичный интервал	Сумма частот
1	3-7	4
2	7-11	5
3	11-15	6
4	15-19	7
5	19-23	3

.

ТЕСТ ПО ПРОВЕРКЕ ОСТАТОЧНЫХ ЗНАНИЙ

1.	Значе	ние 5	5! равн	0							
A)	210			Б) 12	0		В	3) 140		Γ) 125	
2.										вара B в течении не продан товар E	
A)	0,7			Б) 0,1	12		В	3) 0,18		Γ) 0,81	
3.	На по		стоят 1	12 кни	г. Надо	е надо	взять	5 книг. Сколе	ькими (способами она м	ожет это
	792 Матем распр			Б) 17 е ожидание дискретно				в) 60 случайной		Г) 300 ины заданной	законом
	, <u>-</u>	x_i	-1	0	1	2	_				
		p_i	0,2	0,3	0,4	0,1					
A) 5.	-	вари	ационі	Б) 1 ного ря	іда 2 , :	5,5,6		8) 0,4 , 10 равна		Γ) 0,9	
A) 6.					МА на		выбира			Г) 5 вероятность того	о, что из
A):	≈ 0,005			Б) ≈	0,19		В	(3) = 0.24		Γ) ≈ 0.002	
7.	Вероя физич	тнос іеско	ть того	о, что а эта в	юриді ероятн	ическое ость со	е лицо	не погасит и	в срок	% — физически кредит, равна 0 ность того, что о	,2; а для
	0,856 Из ген	нерал	ьной с	Б) 0,1		извлеч		3) 0,85 ыборка объемо		Γ) 0,866 31:	
		x_i	1	1	l	4	i	•			
	· -	n_i	5	14	n_3	22	6	- Определить	значен	ние n_3	
A) 9.			! !	Б) 47		•	В	s) 81 ы заданной заг		Г) 34 распределения	
		x_i	-2	0	2	4					
	-	p_i	0,2	0,4	0,3	0,1	="				
10. l	0,34 Банк ві	ыдал	пять к	Б) 1 средито	ов. Вер	онтко	В	3) 3,24 го, что кредит удут погашены	не буд	Г) 2,91 дет погашен в ср редита, равна:	ок, равна
11.	0,081 Случай <i>P</i> (<i>X</i> ∈ 0			Б) 0,0 ина X		еделен		3) 0,06 мально с пара		Γ) 0,729 ми $a=7$ и $\sigma=$	2. Найти
A)	0,212			Б) 0,1	1295		В	3) 0,6826		Γ) 0,625	

события А случайной в равны:	постоянна и равн величины X – числа	испытаний, в каждом и а 0,4. Тогда математич а появлений события А в	неское ожидание М $n = 200$ проведенны	(X) дискретной ых испытаниях
A) 72	Б) 6	B) 54	Γ) 80	
13. Случайная	величина X	В) 54 распределена нормал	ьно, $f(x) = \frac{1}{5\sqrt{2\pi}}$	$e^{\frac{(x-2)^2}{50}}$. Найти
математич	еское ожидание.			
A) 5	Б) 1	B) 2	Γ) 50	
		В) 2 величина X задана	своей функцией	распределения
[0,	<i>x</i> < 1			
$F(x) = \begin{cases} 0.2 \end{cases}$	$2x - 0.2$, $1 \le x \le 6$	Найти $P($	$X \in (0,1;2)$	
[1, 3	$x < 1$ $2x - 0, 2, 1 \le x \le 6$ $x \ge 6$			
A) 0,2	Б) 1	B) 0	Γ) 3,5	5
-		ой линии регрессии Y в рреляции может быть ра	•	-6,0 -1,5 <i>x</i> . Тогда
A) -1,5	Б) 1,5	B) 4	Γ) -0,	25

1.	Значение 4! р	авно							
	A) 8		Б) 16		В) 24		Γ) 25	
2.	-		_			1	-	B в течении до B в течении B ?	ня 0,3.
	A) 1		Б) 0,21		В	0,18		Γ) 0,49	
3.	Имеются пом каждый салат	-	• •		-		ов можн	о приготовить,	если в
4.	A) 3 Найти матем распределени		Б) 6 е ожидан	ие дискр	етной	В) 2 случайной в	зеличин	Г) 1 ы заданной за	коном
	$\underline{\hspace{1cm}} x_i$	-2	0	2	4	<u> </u>			
	p_i	-2 0,2	0,4	0,3	C	,1			
5.	A) 0,5 Мода вариаці			, 8 , 9 , 10				Γ) 3	
6.	•	ва слова			исана		й карто	Г) 9 эчке, затем кар эсть получить	
	A) $\frac{2}{105}$		Б) $\frac{3}{7}$		В	$\frac{1}{105}$		$\Gamma) \frac{11}{210}$	
7.	Вероятность	того, что лица эта	о юридич вероятно	еское ли	цическ цо не	им лицам, а погасит в ср	65 % - ок кред	- физическим . ит, равна 0,15; ь непогашения	а для
	A) 0,125		Б) 0,1175	į;	В	0,885		Γ) 0,1275	
8.	Из генеральн	ой совоку	лности и	звлечена	выбор	ка объемом п	a = 50:		
	x_i	1	2	3	4	Определить	значени	1e n2	
	n_i	7	10	n_3	14	определить	311 4 1 0 111		
	A) 11		Б) 15) 21		Γ) 19	
9.	Дисперсия ди	искретной І		ой величі І	ины за 	данной закон	ом расп	ределения	
	$\underline{\hspace{1cm}} x_i$	-1	0	1	2				
	p_i	0,2	0,3	0,4	(),1			
10.	A) 0,4 . Банк выдал т 0,2. Тогда вер				ого, ч		будет п	Г) 0,99 огашен в срок, ита, равна:	равна
	A) 0,081		Б) 0,069		В	0,096		Γ) 0,729	
11.	. Случайная ве $P(X \in (5,7))$	еличина	Х распре	делена н	ормал	ьно с параме	етрами	$a = 8$ и $\sigma = 3$.	Найти
	A) 0,212		Б) 0,1295	;	В	0,3413		Γ) 0,625	

	случайной воравны:	постоянна и равна 0 еличины X – числа по	эявлений соб	бытия А в <i>n</i> =	100 проведенных	испытаниях
	A) 24	Б) б	I	3) 34	Γ) 60	
13.	Случайная	Б) 6 величина <i>X</i> расп	гределена н	нормально,	$f(x) = \frac{1}{3\sqrt{2\pi}}e^{-\frac{(x)^2}{2\pi}}$	$\frac{(z-1)^2}{18}$. Найти
		ское ожидание.				
	A) 3	Б) 1	I	3) 18	Γ) 9	
14.	Непрерывная	я случайная вели	чина Х з	адана своеі	й функцией ра	аспределения
	$F(x) = \begin{cases} 0, & x \\ 0, 5x \\ 1, & x \ge 0 \end{cases}$	$x < 1$ $-0.5, 1 \le x \le 3$ ≥ 3	Н	айти $P(X \in (0$,5;2))	
	A) 0,5	Б) 1	I	3) 0	Γ) 0,75	
	-	уравнение прямой л коэффициент коррел			имеет вид $y = 3,2$	-1,6х. Тогда
	A) -1,6	Б) 0,74	I	3) -0,67	Γ) 1,6	

12. Проводится n независимых испытаний, в каждом из которых вероятность появления

	нение б	б! равн	O						
A) 210			Б) 12	0		B)	720	Γ) 2	70
									B в течении дня $0,3$. оодан товар B ?
A) 0,7			Б) 0,	12		B)	0,18	Γ) 0	,28
						открыт авлени		в. Скольким	ии способами можно
	4. Математическо распределения			Б) 120 е ожидание дискро			· · · · · · · · · · · · · · · · · · ·		10 заданной законом
	x_i	-3	0	3	5				
	p_i	-3 0,2	0,4	0,1	0,3				
A) 0,5 5. Moz	ца вари		, ,			B) 5, 5, 7 p		Γ) 9	
после	едовате		извлек		оставл		с помощь		ой азбуки, наудачу ероятность того, что
Вер физ	к выда оятнос ическо	ть тог	% все о, что а эта в	юриді ероятн	итов и ическое ость со	оридич е лицо	не погасит	и, а 66 % - в срок кред	Γ) $\frac{1}{210}$ – физическим лицам. дит, равна 0,3; а для ь того, что очередной
A) 0,43			E) 0.0	234			0.05		
8. Из г			овокуї	іности	извлеч		0,85 борка объем	Γ) 0 OM $n = 80$:	,766
8. Изт		іьной с 1	овокуї	іности	извлеч	нена вы	борка объемо	ом $n = 80$:	
8. Изт			овокуї	іности	извлеч	нена вы		ом $n = 80$:	
A) 41	$\frac{x_i}{n_i}$	5	овокуг 2 17 Б) 74	3 n ₃	извлеч 4 11	ена вы 5 9 В)	борка объемо	ом <i>n</i> = 80: 5 значение <i>n</i> Г) 3	<i>1</i> 3
A) 41	$\frac{x_i}{n_i}$	5	овокуг 2 17 Б) 74	3 n ₃	извлеч 4 11	ена вы 5 9 В)	борка объемо Определити 38	ом <i>n</i> = 80: 5 значение <i>n</i> Г) 3	<i>1</i> 3
A) 41	<u>хі</u> n і	1 5 дискр	овокуп 2 17 Б) 74 етной	3 n ₃	извлеч 4 11 тной ве	ена вы 5 9 В)	борка объемо Определити 38	ом <i>n</i> = 80: 5 значение <i>n</i> Г) 3	<i>1</i> 3
A) 41 9. Дис A) 1,3 10. В ср	$egin{array}{c} x_i \\ n_i \end{array}$ персия $egin{array}{c} x_i \\ p_i \end{array}$	1 5 дискр -1 0,3	2 17 Б) 74 етной (0 0,2 Б) 1 студен	3 n3 случай 2 0,3	извлеч 4 11 ной ве 5 0,2	вена вы 5 9 В) личинь В) сдают з	борка объемо Определити 38 и заданной за 3,24 качет с перво	гом <i>n</i> = 80: Б значение <i>n</i> Г) 3 коном распр Г) 4 ого раза. То	4 4 ределения
 A) 41 9. Дис A) 1,3 10. В срито A) 0,245 11. Случа 	x _i n _i персия x _i p _i реднем из 6 че 76	1 5 дискр -1 0,3 80 % словек,	2 17 Б) 74 етной (0 0,2 Б) 1 студен сдаван Б) 0,	лости 3 n ₃ случай 2 0,3 птов граних за	извлеч 4 11 ной вел 5 0,2 руппы сачет, с	вена вы 5 9 В) личинь В) сдают з первого В)	борка объемо Определити 38 и заданной за 3,24 вачет с перво раза сдадут 0,4096	 гом n = 80: гом n = 80: гом n = 80: гом п = 80: гом п	4 ределения ,81 гда вероятность того,

события А пост	гоянна и равна 0,6. Тог	гда математическое ох	ых вероятность появления жидание $M(X)$ дискретной проведенных испытаниях
A) 72	Б) 60	B) 56	Γ) 30
13. Случайная во	еличина X распредел	лена нормально, f	Γ) 30 $(x) = \frac{1}{4\sqrt{2\pi}} e^{-\frac{(x+3)^2}{32}}.$ Найти
математическо	е ожидание.		
A) 32 14. Непрерывная $F(x) = \begin{cases} 0, & x < 0, 1x - 0 \\ 1, & x \ge 3 \end{cases}$		B) -3 X задана своей $P(X \in (0,2;5))$	Г) 4 функцией распределения 5))
A) 0,4	Б) 1	B) 0	Γ) 0,2
	равнение прямой линии рэффициент корреляции		ет вид $y = -3.6 + 1.5x$. Тогда
A) -3,6	Б) 0,25	B) 4	Γ) -0,15

1.	Значе	ение 7	7! равн	o							
A) 2	2100			Б) 50	40		B	7020		Γ) 2070	
2.										вара B в течении B не продан товар B ?	
A) 1	1			Б) 0,	12		B	0,2		Γ) 0,36	
3.	Скол	ьким:	и спосо	обами і	из коло	оды в 3	6 карт	можно выбра	ть 3 ка	рты?	
A) 1084. Математическое распределения			ОЖИД	1 1				Г) 310 величины заданной за		аконом	
		x_i	0,3	0	2	5	_				
		p_i	0,3	0,2	0,3	0,2					
A) 15.	-		ационі) 1 , 10 равна		Γ) 2	
A) 2				Б) 7) 6		Γ) 5	
	-				-		-	от 4 буквы. АБ, равна:	Тогда	вероятность того,	что из
	A) $\frac{11}{420}$]	Б) <u>3</u>			B) $\frac{4}{7}$		Γ) $\frac{1}{420}$	
7.	Веро физи	ятнос ческо	ть тог	о, что а эта в	юриди ероятн	ическое пость со	е лицо	не погасит	в срок	% – физическим кредит, равна 0,01 ность того, что оче	; а для
A) (0,43			Б) 0,	124		В	0,21		Γ) 0,876	
8.	Из ге	нерал	іьной с	овокуі	тности	извлеч	нена вы	іборка объем	om $n = 0$	60:	
		x_i	1	2	3	4	5	Определит	L 2U2Uei	шие и	
		n_i	6	17	n_3	11	9	Определит	b siia ici	nine n ₃	
A) 1				Б) 17				37		Γ) 34	
9.	Дисп				•			ы заданной за	коном	распределения	
		x_i	-3 0,2	0	3	5	-				
		p_i	0,2	0,4	0,1	0,3					
A) 1 10.	В сре						сдают			Г) 7,81 а. Тогда вероятнос	гь того,
	что и	з 6 ч€	еловек,			ачет, с			ровно	3 студента, равна:	
11. (),0819 Случаі Р(X ∈	йная		Б) 0, іна X		еделена) 0,4096 гально с пара	аметрам	Γ) 0,5333 ми $a = 13$ и $\sigma = 3$.	Найти
A) (0,212			Б) 0,	1295		B	0,6826		Γ) 0,625	

2.2 Критерии оценки качества освоения дисциплины

Качество освоения дисциплины оценивается по степени успешности ответов на вопросы коллоквиума, результатов выполнения практических заданий (в том числе, контрольных работ) и результатов прохождения тестирования. Прохождение всех средств текущего контроля позволяет обеспечить качественное освоение всех общекультурных и профессиональных компетенций, предусмотренных для данной дисциплины.

Алгоритм оценивания ответов на коллоквиумах таков. Развернутый ответ студента должен представлять собой связное, логически последовательное сообщение на заданную тему.

Критерии оценивания:

- 1) полноту и правильность ответа;
- 2) степень осознанности, понимания изученного;
- 3) языковое оформление ответа.

Оценка «Отлично» ставится, если:

- 1) студент полно излагает материал, дает правильное определение основных понятий;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно с точки зрения норм литературного языка.
- <u>«Хорошо»</u> студент дает ответ, удовлетворяющий тем же требованиям, что и для отметки «5», но допускает 1–2 ошибки, которые сам же исправляет, и 1–2 недочета в последовательности и языковом оформлении излагаемого.
- <u>«Удовлетворительно»</u> студент обнаруживает знание и понимание основных положений данной темы, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил;
- 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- 3) излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.

<u>Оценка «Неудовлетворительно»</u> ставится, если студент обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал.

<u>Оценка «Неудовлетворительно»</u> отмечает такие недостатки в подготовке, которые являются серьезным препятствием к успешному овладению последующими знаниями и умениями.

Критерии оценки тестовых заданий, выполняемых обучающимися:

«Отлично»	Выполнение более 90% тестовых заданий		
«Хорошо»	Выполнение от 65% до 90% тестовых заданий		
«Удовлетворительно»	Выполнение более 50% тестовых заданий		
«Неудовлетворительно»	Выполнение менее 50% тестовых заданий		

Оценивание практических заданий и контрольных работ проводится по пяти балльной системе (1, 2, 3, 4, 5):

- оценка «отлично» выставляется обучающемуся, если правильно решены практические залания:
- оценка «хорошо» выставляется обучающемуся, если при общем верном ходе доказательства имеются ошибки при доказательствах и (или) арифметические ошибки в задачах;

- оценка «удовлетворительно» выставляется обучающемуся, если не приведены доказательства при знании основных определений и умении решать практические задачи.
- оценка «неудовлетворительно» выставляется обучающемуся, если он не знает основных определений и не владеет навыками решения практических задач.

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

3.1 Теоретические вопросы для проведения экзаменов

Вопросы для подготовки к экзамену по разделу I «Математический анализ»

- 1. Определенный интеграл. Нижняя и верхняя интегральные суммы, их свойства.
- 2. Определение и геометрический смысл определенного интеграла.
- 3. Свойства определенного интеграла, формула Ньютона-Лейбница.
- 4. Приложения определенного интеграла (вычисление площади, работы, объемов тел вращения).
- 5. Замена переменной в определенном интеграле. Интегрирование по частям в определенном интеграле.
 - 6. Несобственные интегралы. Теоремы о несобственных интегралах.
 - 7. Понятие дифференциального уравнения, основные определения.
- 8. Теорема существования и единственности решения диф. уравнения. 1-го порядка. Задача Коши.
 - 9. Дифференциальные уравнения первого порядка с разделяющимися переменными.
 - 10. Однородные дифференциальные уравнения 1-го порядка.
 - 11. Линейные дифференциальные уравнения 1-го порядка.
 - 12. Дифференциальные уравнения 2-го порядка, основные понятия. Задача Коши.
 - 13. Интегрируемые типы дифференциальных уравнений 2-го порядка.
 - 14. Дифференциальные уравнения 2-го порядка с постоянными коэффициентами.
 - 15. Характеристическое уравнение.
- 16. Неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Нахождение частного решения для различных стандартных правых частей.
 - 17. Комплексные числа, действия над ними.
 - 18. Понятие функции нескольких переменных, ее области определения, графика.
 - 19. Частные производные функции нескольких переменных.
 - 20. Экстремум функции двух независимых переменных.
 - 21. Числовые ряды, основные определения.
- 22. Признаки сравнения рядов с положительными членами, признаки Даламбера и Коши.
 - 23. Знакочередующиеся ряды. Признак Лейбница.
 - 24. Степенные ряды. Ряды Тейлора и Маклорена.
 - 25. Разложение элементарных функций в ряд Маклорена.
 - 26. Интегрирование с помощью степенных рядов.

Вопросы для подготовки к экзамену по разделу II «Линейная алгебра»

- 1. Привести определение матрицы. Перечислить вид матриц.
- 2. Сформулировать арифметические операции над матрицами.
- 3. Транспонирование матрицы. Привести свойства транспонирования.

- 4. Сформулировать понятие определителя квадратной матрицы любого порядка.
- 5. Перечислить свойства определителей. Как найти величину определителя второго порядка.
 - 6. Метод треугольника для вычисления определителя третьего порядка.
 - 7. Метод Саррюса. Дать определения минора и алгебраического дополнения.
 - 8. Метод разложения определителя по элементам строки (столбца)
 - 9. Определение обратной матрицы. Привести свойства обратной матрицы.
- 10. Матрицы элементарных преобразований. Сформулировать определение ранга матрицы.
- 11. Привести определение системы линейных уравнений. Определение совместных, несовместных, определенных и неопределенных систем уравнений.
 - 12. Формулы Крамера.
 - 13. Метод решения систем линейных уравнений методом Гаусса.
- 14. Суть матричной записи систем линейных уравнений. Метод решения систем линейных уравнений с помощью обратной матрицы.
- 15. Сформулировать условия совместности систем линейных уравнений. Базисные решения системы.
- 16. Дать определение линейного векторного пространства. Определение n –мерного вектора. Перечислить операции над n –мерными векторами.
 - 17. Теоремы о линейной зависимости векторов.
 - 18. Сформулируйте определение размерности и базиса векторного пространства.
 - 19. Разложение произвольного вектора линейного пространства по базису.
- 20. Переход от одного базиса векторного пространства к другому. Матрица перехода.
 - 21. Декартова система координат. Формула для вычисления длины отрезка.
 - 22. Определение координат точки, делящей отрезок в данном отношении.
 - 23. Угловым коэффициентом прямой. Уравнение прямой с угловым коэффициентом.
- 24. Общее уравнение прямой и его анализ. Условия параллельности и перпендикулярности двух прямых.
 - 25. Определение кривой второго порядка.
 - 26. Уравнения: окружности, эллипса, гиперболы и параболы.
 - 27. Уравнения плоскости в пространстве. Угол между плоскостями.
 - 28. Условия параллельности и перпендикулярности двух плоскостей.
 - 29. Расстояние от точки до плоскости.
 - 30. Уравнения прямой в пространстве.
 - 31. Угол между прямой и плоскостью.
 - 32. Условия параллельности и перпендикулярности прямой и плоскости.

Вопросы для подготовки к экзамену по разделу III «Теория вероятностей и математическая статистика»

- 1. Предмет теории вероятностей. Событие. Классификация событий.
- 2. Теоремы умножения вероятностей.
- 3. Независимые события. Теорема умножения для независимых событий.
- 4. Условная вероятность. Теорема умножения вероятностей зависимых событий.
- 5. Сумма событий. Совместные и несовместные события. Теоремы сложения вероятностей.
- 6. Полная группа событий. Сумма вероятностей событий, образующих полную группу.
- 7. Вероятность противоположного события; вероятность осуществления только одного события; вероятность осуществления хотя бы одного события. Формула полной вероятности.

- 8. Вероятность гипотез. Формула Бейеса.
- 9. Формула Бернулли.
- 10. Локальная и интегральная теоремы Муавра-Лапласа.
- 11. Формула Пуассона для редких событий.
- 12. Дискретные и непрерывные случайные величины.
- 13. Закон распределения вероятностей случайной величины.
- 14. Математическое ожидание дискретной случайной величины. Свойства математического ожидания.
- 15. Функция распределения и плотность распределения вероятности непрерывной случайной величины.
 - 16. Числовые характеристики непрерывной случайной величины.
- 17. Законы распределения непрерывных случайных величин: равномерный закон распределения
 - 18. Задачи математической статистики. Обработка статистических данных.
 - 19. Техника построения вариационного ряда.
 - 20. Эмпирическая функция распределения; кумулята; полигон; гистограмма.
 - 21. Числовые характеристики и методы их вычисления.
 - 22. Критерии согласия. Ошибки первого и второго рода.
- 23. Проверка гипотезы о нормальном законе распределения генеральной совокупности.
 - 24. Критерий согласия Пирсона.
 - 25. Функциональна и статистическая зависимость.
 - 26. Понятие нелинейной и множественной регрессии.
 - 27. Уравнение линейной регрессии по МНК.
 - 28. Коэффициент корреляции.

3.2 Показатели, критерии и шкала оценивания ответов на экзамене

Экзамен								
Критерии / Баллы	Оценка «5»	Оценка «4»	Оценка «3»	Оценка «2»				
Полнота и правильность ответа	Обучающийся полно излагает материал, дает правильное определение основных понятий	Обучающийся достаточно полно излагает материал, однако допускает 1-2 ошибки, которые сам же исправляет, и 1-2 недочета в последовательности и языковом оформлении излагаемого.	Обучающийся демонстрирует знание и понимание основных положений данной темы, но излагает материал неполно и допускает неточности в определении понятий или формулировке правил	Обучающийся демонстрирует незнание большей части соответствующего вопроса				
Степень осознанности,	Обучающийся демонстриру- ет понимание	Обучающийся присутствуют 1-2 недочета в	Обучающийся не умеет дос- таточно глу-	Обучающийся допускает ошибки в				
понимания изученного	материала.	обосновании своих сужде-	боко и дока- зательно	формулиров- ке определе-				

	новать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоя-	ний, количе- ство приво- димых при- меров огра- ничено	обосновать свои сужде- ния и привес- ти свои при- меры	ний и правил, искажающие их смысл
	тельно со- ставленные			
Языковое оформление ответа	Обучающийся излагает материал последовательно и правильно с точки зрения норм литературного языка	Обучающийся излагает материал последовательно, с 2-3 ошибками в языковом оформлении	Обучающийся излагает материал непоследовательно и допускает много ошибок в языковом оформлении излагаемого материала	Обучающийся беспорядочно и неуверенно излагает материал